Cho hình chóp S.ABCD có đáy ABCD là hình thang, A D / / B C , A D = 3 B C . M , N lần lượt là trung điểm AB; CD;G là trọng tâm. Mặt phẳng (GMN) cắt hình chóp S.ABCD theo thiết diện là
A. Hình bình hành
B. Δ G M N
C. Δ S M N
D. Ngũ giác
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt S A → = a → , S B → = b → , S C → = c → , S D → = d → . Chứng minh: a → + c → = d → + b → .
- Gọi O là tâm của hình bình hành ABCD. Ta có:
- Từ (1) và (2) suy ra:
Cho hình chóp S.ABCD có đáy là hình thang cân, S A ⊥ A B C D , A D = 2 B C = 2 A B . Trong tất cả các tam giác mà 3 đỉnh lấy từ 5 điểm S, A, B, C, D có bao nhiêu tam giác vuông?
A. 3
B. 6
C. 5
D. 7
Cho hình chóp S.ABCD có đáy là hình thang cân, S A ⊥ A B C D , A D = 2 B C = 2 A B . Trong tất cả các tam giác mà 3 đỉnh lấy từ 5 điểm S, A, B, C, D có bao nhiêu tam giác vuông?
A. 3
B. 6
C. 5
D. 7
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B có AD=3a, AB=BC=2a. Biết SA⊥(ABCD).
a) Tính khoảng cách từ C đến mặt phẳng (SAD).
b) Tính khoảng cách từ D đến mặt phẳng(SAC).
a, Ta có: \(\left\{{}\begin{matrix}AB\perp SA\left(do:SA\perp\left(ABCD\right)\right)\\AB\perp AD\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow AB\perp\left(SAD\right)\)
Từ C kẻ CH // AB ⇒ CH ⊥ (SAD)
⇒ d (C, (SAD)) = CH = 2a
b, Ta có: \(\left(SAC\right)\cap\left(ABCD\right)=AC\)
Hạ DE ⊥ AC ⇒ DE ⊥ (SAC)
⇒ d(D, (SAC)) = DE
Ta có: AC = 2a√2, AH = HC 2a và HD = a
Xét tam giác HDC vuông tại H, có: \(DC=\sqrt{HD^2+HC^2}=a\sqrt{5}\)
Xét tam giác AHC vuông cân tại H, có: \(\widehat{HAC}=45^o=\widehat{DAE}\)
Xét tam giác ADE vuông tại E, có: \(DE=AD.sin\widehat{DAE}=\dfrac{3a\sqrt{2}}{2}\)
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết S A ⊥ A B C D A B = B C = a ; A D = 2 a ; S A = a 2 . Gọi E là trung điểm của AD. Tính bán kính mặt cầu đi qua các điểm A, B, C, D, E.
A. a 3 2
B. a
C. a 6 3
D. a 30 6
Xét tứ giác ABCE có
là hình bình hành.
Lại có
là hình vuông cạnh a.
Bán kính đường tròn ngoại tiếp hình vuông ABCE là
R d = a 2 2
Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp
S.ABCE là:
Chọn B.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại C và D, A B C ^ = 30 o . Biết AC=a, C D = a 2 và S A = a 3 2 cạnh SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SCD) bằng
A. a 6
B. a 6 2
C. a 6 4
D. a 3 2
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại C và D, A B C ^ = 30 0 . Biết A C = a , C D = a 2 , S A = a 3 2 và cạnh SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SCD) bằng:
Cho hình chóp S.ABCD có đáy là hình thang vuông ở A và D, cạnh đáy AB = a, cạnh đáy CD = 2a, AD = a. Hình chiếu vuông góc của S lên đáy trùng với trung điểm CD. Biết rằng diện tích mặt bên (SBC) bằng 3 a 2 2 . Thể tích của hình chóp S.ABCD bằng:
A. a 3 B. 3 a 3 2
C. 3 a 3 D. 3 2 a 3
Chọn A.
Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, SA vuông góc với mặt phẳng đáy, SA=BD=a√3. Góc giữa đường thẳng SC và mặt phẳng đáy (ABCD) bằng
A. 60° B. 30° C.90° D.45°
Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).
Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A.
Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A
Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.
Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) cạnh \(a\). Cho biết \(SA = a\sqrt 3 ,SA \bot AB\) và \(SA \bot A{\rm{D}}\). Tính góc giữa \(SB\) và \(C{\rm{D}}\), \(S{\rm{D}}\) và \(C{\rm{B}}\).
THAM KHẢO:
CD//AB nên góc giữa SB và CD là góc giữa AB và SB, \(\widehat{ABS}\)
CB//AD nên góc giữa SD và CB là góc giữa SD và AD, \(\widehat{ADS}\)
Ta có: tan\(\widehat{ABS}\)=tan\(\widehat{ADS}\)=\(\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)
Suy ra \(\widehat{ABS}\)=\(\widehat{ADS}\)=\(\dfrac{\pi}{3}\)