Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranthuylinh
Xem chi tiết
Ngô Bá Hùng
23 tháng 6 2021 lúc 21:39

1. hàm số nghịch biến khi

\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\) 

2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)

\(\Rightarrow y=0\)

Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)

3. pt hoành độ giao điểm của 

\(y=-x+2,và,y=2x-1\) là

\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)

A(1,1)

3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)

James Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 20:32

a: Để hàm số nghịch biến thì m-2<0

hay m<2

b: Thay x=3 và y=0 vào hàm số, ta được:

\(3m-6+m+3=0\)

hay \(m=\dfrac{3}{4}\)

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 13:34

a: Để hàm số y=(m-2)x+m+3 nghịch biến trên R thì m-2<0

=>m<2

b: Thay x=3 và y=0 vào y=(m-2)x+m+3, ta được:

\(3\left(m-2\right)+m+3=0\)

=>3m-6+m+3=0

=>4m-3=0

=>4m=3

=>\(m=\dfrac{3}{4}\)

c: Tọa độ giao điểm của hai đường thẳng y=-x+2 và y=2x-1 là:

\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=3\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1+1=0\end{matrix}\right.\)

Thay x=1 và y=0 vào y=(m-2)x+m+3, ta được:

\(1\left(m-2\right)+m+3=0\)

=>m-2+m+3=0

=>2m+1=0

=>2m=-1

=>\(m=-\dfrac{1}{2}\)

quynhnhu
Xem chi tiết
Thanh Hà
Xem chi tiết
Akai Haruma
23 tháng 12 2021 lúc 21:47

Lời giải:

a. Với $m=3$ thì ptđt là $y=-x+3$. Đồ thị $y=-x+3$ như dưới đây:

b. Để hàm số đồng biến thì: $2-m>0$

$\Leftrightarrow m< 2$

c. Để đths đi qua $M(-1;1)$ thì $y_M=(2-m)x_M+3$

$\Leftrightarrow 1=(2-m)(-1)+3$
$\Leftrightarrow m=0$

d. Để đths đã cho với $y=-x+2$ song song với nhau thì:

$2-m=-1$

$\Leftrightarrow m=3$

Linh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2020 lúc 13:11

Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)

hay \(m\ne3\)

a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì 

Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được: 

\(\left(m-3\right)\cdot0+m+2=-3\)

\(\Leftrightarrow m+2=-3\)

hay m=-5(nhận)

b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì 

\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1

Thanh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 7:52

b: Để hai đường thẳng song song thì m-1=-1

hay m=0

Nguyễn Thị Ngọc Mai
Xem chi tiết
????????????????
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 21:54

a: Để hàm số nghịch biên thì m-2<0

=>m<2

b: Thay x=3 và y=0 vào (d), ta đc:

3(m-2)+m+3=0

=>3m-6+m+3=0

=>4m-3=0

=>m=3/4

c: Tọa độ giao điểm là

2x-1=-x+2 và y=-x+2

=>x=1 và y=1

Thay x=1 và y=1 vào (d), ta được:

m-2+m+3=1

=>2m+1=1

=>m=0

Phan Thị Hồng Ánh
Xem chi tiết
Không Tên
6 tháng 1 2019 lúc 22:47

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

Không Tên
6 tháng 1 2019 lúc 22:54

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

Không Tên
6 tháng 1 2019 lúc 23:04

Giả sử (d) luôn đi qua điểm cố định M(x0; y0)

Ta có:  \(y_0=\left(m+5\right)x_0+2m-10\)

<=>  \(mx_0+5x_0+2m-10-y_0=0\)

<=>  \(m\left(x_o+2\right)+5x_0-y_0-10=0\)

Để M cố định thì:  \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\)   <=>   \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)

Vậy...