Tìm nghiệm của phương trình sin 2 3 x - c o s 2 4 x = sin 2 5 x - c o s 2 6 x
A. x = k π 6 h o ặ c x = k π 3
B. x = k π 6 h o ặ c x = k π 2
C. x = k π 9 h o ặ c x = k π 2
D. x = k π 6 h o ặ c x = k π 9
- Giải phương trình : cos ( x - \(_{^{ }15}o\)) = \(\frac{\sqrt{2}}{2}\)
- Giải các phương trình sau và tìm các nghiệm trong đoạn [ 0;π ]
1. sin ( 3x+1)=sin(x-2)
2. sin ( x - \(^{120^o}\) )+ cos2x=0
3. sin3x + sin ( \(\frac{\pi}{4}\) - \(\frac{x}{2}\) ) = 0
Tìm nghiệm x ∈ (0; π) của phương trình: 5cosx + sinx - 3 = 2 sin(2x + π 4 )
A.
B.
C.
D. Vô nghiệm
Nghiệm của phương trình sin x - 3 . cos x = 2 . sin 3 x là
Tìm số nghiệm x ∈ (0; π) của phương trình 5cosx + sinx - 3 = 2 sin(2x + π 4 ) (*)
A: 1
B: 2
C: 3
D: 4
Trong các phương trình sau: cos x = 5 - 3 (1); sin x = 1 - 2 (2); sin x + cos x = 2 (3), phương trình nào vô nghiệm?
A. (2)
B. (1)
C. (3)
D. (1) và (2)
Trong các phương trình sau: cos x = 5 - 3 (1); sin x = 1 - 2 (2); sin x + cos x = 2 (3), phương trình nào vô nghiệm?
A. (2).
B. (1).
C. (3).
D. (1) và (2).
Chọn C
Ta có: nên (1) và (2) có nghiệm.
Cách 1:
Xét: nên (3) vô nghiệm.
Cách 2:
Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:
(vô lý) nên (3) vô nghiệm.
Cách 3:
Vì
nên (3) vô nghiệm.
Tính tổng S là tổng các nghiệm thuộc đoạn 0 , 2 π của phương trình: sin 2 x + 9 π 2 - 3 . cos x - 15 π 2 = 1 + 2 . sin x
Câu 3. Phương trình vô nghiệm có tập nghiệm là?
A. S = f B. S = 0 C. S = {0} D. S = {f}
Câu 4. Điều kiện xác định của phương trình là?
A. x ≠ 2 và B. x ≠ -2 và C. x ≠ -2 và x ≠ 3 D. x ≠ 2 và
Câu 5. Cho AB = 3cm, CD = 40cm. Tỉ số của hai đoạn thẳng AB và CD bằng?
A. B. C. D.
Nghiệm của phương trình \(sin^4x+cos^4x+cos\left(x-\dfrac{\pi}{4}\right).sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}sin^22x-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1-cos4x}{2}\right)-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}cos4x+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}\left(1-2sin^22x\right)+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow...\)