Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau O A = O B = O C = 3 . Khoảng cách từ O đến m p A B C là:
A. 1 3
B. 1
C. 1 2
D. 1 3
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và \(OA = a,OB = a\sqrt 2 \) và \(OC = 2a\). Tính khoảng cách từ điểm \(O\) đến mặt phẳng \((ABC)\).
Ta có \(OA \bot OB,OA \bot OC \Rightarrow OA \bot \left( {OBC} \right);BC \subset \left( {OBC} \right) \Rightarrow OA \bot BC\)
Trong (OBC) kẻ \(OD \bot BC\)
\(\begin{array}{l} \Rightarrow BC \bot \left( {OAD} \right);BC \subset \left( {ABC} \right) \Rightarrow \left( {OAD} \right) \bot \left( {ABC} \right)\\\left( {OAD} \right) \cap \left( {ABC} \right) = AD\end{array}\)
Trong (OAD) kẻ \(OE \bot AD\)
\( \Rightarrow OE \bot \left( {ABC} \right) \Rightarrow d\left( {O,\left( {ABC} \right)} \right) = OE\)
Xét tam giác OBC vuông tại O có
\(\frac{1}{{O{D^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow OD = \frac{{2a\sqrt 3 }}{3}\)
Xét tam giác OAD vuông tại O có
\(\frac{1}{{O{E^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{D^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}}} = \frac{7}{{4{a^2}}} \Rightarrow OE = \frac{{2a\sqrt 7 }}{7}\)
Vậy \(d\left( {O,\left( {ABC} \right)} \right) = \frac{{2a\sqrt 7 }}{7}\)
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết O A = 3 , O B = 4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
B. 41 12
C. 144 41
D. 12 41
Đáp án D
Ta có: V O . A B C = 1 6 O A . O B . O C = 6 ⇒ O C = 3
Lại có 1 d O ; A B C 2 = 1 O A 2 + 1 O B 2 + 1 O C 2 ⇒ d O ; A B C = 12 41
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết OA=3, OB=4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết OA=3, OB=4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
B. 41 12
C. 144 41
D. 12 41
Cho tứ diện OABC có OA;OB;OC đôi một vuông góc, biết O A = a , O B = 2 a , O C = a 3 Tính khoảng cách từ điểm O đến mặt phẳng (ABC)
A. a 3 2
B. a 9
C. a 17 19
D. 2 a 3 19
Đáp án D
Gọi H là hình chiếu của O xuống (ABC)
Ta có: 1 O H 2 = 1 a 2 + 1 2 a 2 + 1 a 3 2 = 19 12 a 2 ⇒ O H = 2 a 3 19
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc, biết OA =a, OB = 2a, OC = a 3 . Tính khoảng cách từ điểm O đến mặt phẳng (ABC)
A. a 3 2
B. a 9
C. a 17 19
D. 2 a 3 19
Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau OA=OB=OC=a. Gọi M là trung điểm của BC. Khoảng cách giữa hai đường thẳng OM và AB bằng
Qua B kẻ đường thẳng song song OM cắt OC kéo dài tại D
\(\Rightarrow OM||\left(ABD\right)\Rightarrow d\left(OM;AB\right)=d\left(OM;\left(ABD\right)\right)=d\left(O;\left(ABD\right)\right)\)
Gọi E là trung điểm BD, từ O kẻ \(OH\perp AE\)
\(BD||OM\) và M là trung điểm BC\(\Rightarrow OM\) là đường trung bình tam giác BCD
\(\Rightarrow BD=2OM=BC\Rightarrow\Delta BCD\) vuông cân tại B
O là trung điểm CD (do OM là đường trung bình BCD), E là trung điểm BD
\(\Rightarrow OE\) là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=\dfrac{a\sqrt{2}}{2}\\OE||BC\Rightarrow OE\perp BD\end{matrix}\right.\)
\(\left\{{}\begin{matrix}OA\perp OB\\OA\perp OC\end{matrix}\right.\) \(\Rightarrow OA\perp\left(OBC\right)\Rightarrow OA\perp BD\)
\(\Rightarrow BD\perp\left(OAE\right)\Rightarrow BD\perp OH\)
\(\Rightarrow OH\perp\left(ABD\right)\Rightarrow OH=d\left(O;\left(ABD\right)\right)\)
Áp dụng hệ thức lượng trong tam giác vuông OAE:
\(OH=\dfrac{OA.OE}{AE}=\dfrac{OA.OE}{\sqrt{OA^2+OE^2}}=\dfrac{a\sqrt{3}}{3}\)
Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Mệnh đề nào sau đây đúng?
A. H là trọng tâm tam giác ABC.
B. H là trung điểm của BC.
C. H là trực tâm của tam giác ABC.
D. H là trung điểm của AC.
Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Mệnh đề nào sau đây đúng?
A. H là trọng tâm tam giác ABC
B. H là trung điểm của BC
C. H là trực tâm tam giác ABC
D. H là trung điểm của AC