Biết {M} biểu diễn số phức z là đường thẳng x-2y-1 = 0. Tìm z m i n
A. z m i n = 1
B. z m i n = 1 5
C. z m i n = 1 2
D. z m i n = 1 3
Biết tập hợp điểm M biểu diễn số phức z là đường thẳng (d): 3x + 2y – 5 = 0. Tìm số phức z sao cho phần thực và phần ảo bằng nhau
A. z = 5 + 5i
B. z = 5 – 5i
C. z = -5 + 5i
D. z = 1 + i
z = -1 + i được biểu diễn bởi điểm M trong mặt phẳng Oxy. Biết điểm M' biểu diễn số phức w và M’ đối xứng với M qua đường thẳng: ∆ : x-y+1 = 0. Tìm w.
A. w = 0
B. w = 1-i
C. w = 1+i
D. w = -2+2i
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Biết {M} biểu diễn số phức z là đường thẳng ∆ : 2x - 3y + 6 = 0. Tìm z m i n .
A. z m i n = 13
B. z m i n = 2
C. z m i n = 3
D. z m i n = 6 13
Biết {M} biểu diễn số phức z là đường thẳng ∆ : 3x+4y-2 = 0. Tìm z m i n
A. z m i n = 2 5
B. z m i n = 1 3
C. z m i n = 1 4
D. z m i n = 2 3
Biết {M} biểu diễn số phức Z là (d): x-y-2 = 0. Đặt W = Z+1-i. Tìm W m i n
A. W m i n = 2
B. W m i n = 2
C. W m i n = 2 2
D. W m i n = 4
Biết {M} biểu diễn số phức z là đường thẳng y = 3x + 4. Tìm min|z|.
A. min|z| = 3 4
B. min|z| = 8 5
C. min|z| = 3
D. min|z| = 4
Trong mặt phẳng phức cho hai điểm M,N lần lượt biểu diễn các số phức z, w=\(\dfrac{1}{\overline{z}}\) (z#0) . Giả sử điểm M di động trên đường tròn (C): \(^{\left(X+1\right)^2}\)+\(\left(Y-1\right)^2\)=2
thì tập hợp điểm N là:
A. Đường thẳng 2x-2y+1=0.
B. Đường thẳng 2x+2y+1=0.
C. Đường tròn tâm (2;2) bán kính bằng 1.
D. Đường tròn tâm (2;-2) bán kính bằng 1
Lời giải:
Nếu gọi \(z=a+bi\Rightarrow w=\frac{1}{\overline{z}}=\frac{z}{|z|^2}=\frac{a+bi}{a^2+b^2}\)
Điểm \(M\) di động trên $(C)$ nên \((a+1)^2+(b-1)^2=2\)
\(\Rightarrow a^2+b^2=2b-2a\)
Từ đây ta có:
\(\frac{2a}{a^2+b^2}=\frac{2a}{2b-2a};\frac{2b}{a^2+b^2}=\frac{2b}{2b-2a}\Rightarrow \frac{2a}{a^2+b^2}-\frac{2b}{a^2+b^2}=-1\)
Tương đương với việc tập hợp các điểm biểu diễn số phức \(w\) nằm trên đường thẳng \(2x-2y+1=0\)
Đáp án A.