Biết số phức z, w được biểu diễn bởi các điểm M, N và w = z 1 - i và chu vi ∆ OMN bằng 2. Tính |z|
A. |z| = 1
B. |z| = 2
C. |z| = 2- 2
D. |z| = 2 -1
Cho số phức z và w biết w = z 1 - i và M, N lần lượt là các điểm biểu diễn z, w trong Oxy. Biết diện tích ∆ OMN bằng 1. Tính |z|.
A. |z| = 1 2
B. |z| = 1
C. |z| = 2
D. |z| = 2
z = -1 + i được biểu diễn bởi điểm M trong mặt phẳng Oxy. Biết điểm M' biểu diễn số phức w và M’ đối xứng với M qua đường thẳng: ∆ : x-y+1 = 0. Tìm w.
A. w = 0
B. w = 1-i
C. w = 1+i
D. w = -2+2i
Hai số phức z = -1+2i và w = -2+i được biểu diễn bởi hai điểm M, N thì M và N là hai điếm đối xứng nhau qua đường thẳng
A. x = 0
B. y = 0
C. y = x
D. y = -x
Gọi M,N lần lượt là điểm biểu diễn hình học các số phức z=2-i và w=4+5i. Tọa độ trung điểm I của đoạn thẳng MN là
A..
B..
C..
D. .
Cho số phức thỏa mãn ( 1 + i ) z + 2 + ( 1 + i ) z - 2 = 4 2 .
Gọi m = m a x z ; n = m i n z và số phức w=m+ni. Tính w 2018 .
A. 4 1009
B. 5 1009
C. 6 1009
D. 2 1009
Cho M(1;2) là điểm biểu diễn số phức z. Tìm tọa độ của điểm N biểu diễn số phức w = z + 2 z ¯ .
A. N = (3;-2)
B. N = (2;-3)
C. N = (2;1)
D. N = (2;3)
Gọi M là điểm biểu diễn số phức w = 2 z + z ¯ + 1 - i z 2 + i , trong đó z là số phức thỏa mãn ( 1 - i ) ( z - i ) = 2 - i + z . Gọi N là điểmtrong mặt phẳng sao cho ( O x → , O N → ) = 2 ρ , trong đó ρ = ( O x → , O M → ) là góc lượng giác tạo thành khi quay tia Ox tới vị trí tia OM. Điểm N nằm trong góc phần tư nào?
Biết số phức z ≠ 0 và w = z 1 - i . Biết A,B là các điểm biểu diễn của z,w thì:
A. ∆ ABO đều
B. ∆ ABO vuông cân
C. O là trung điểm AB
D. ∆ ABO có một góc 30 0