Cho số phức z và w biết w = z 1 - i và M, N lần lượt là các điểm biểu diễn z, w trong Oxy. Biết diện tích ∆ OMN bằng 1. Tính |z|.
A. |z| = 1 2
B. |z| = 1
C. |z| = 2
D. |z| = 2
Cho số phức z thỏa mãn z - 1 = 5 . Biết tập hợp các điểm biểu diễn số phức w xác định bởi w = ( 2 + 3 i ) . z ¯ + 3 + 4 i là một đường tròn bán kính R. Tính R
A. R= 5 17
B. R= 5 10
C. R= 5 5
D. R= 5 13
Cho số phức z có phần thực và phần ảo đều khác 0. Khi đó số phức z và w= - z ¯ được biểu diễn hình học bởi 2 điểm M, N thì M và N:
A. Đối xứng qua gốc O
B. Đối xứng qua Oy
C. Đối xứng qua Ox
D. Cả A, B, C đều sai
Cho z, w là 2 số phức được biểu diễn bởi hai điểm đối xứng nhau qua trục Oy. Biết z = 1 + 2i. Tìm w
A. w = 1-2i
B. w = -1+2i
C. w = 2 + i
D. w = 2 - i
Cho số phức z thỏa mãn z - 1 = 5 Biết tập hợp các điểm biểu diễn số phức w xác định bởi w = 2 + 3 i . z + 3 + 4 i là một đường tròn bán kính R. Tính R
Cho các số phức z=-1+2i,w=2-i. Điểm nào trong hình bên biểu diễn số phức z+w?
A.N
B.P
C.Q
D.M
Hai số phức z = -1+2i và w = -2+i được biểu diễn bởi hai điểm M, N thì M và N là hai điếm đối xứng nhau qua đường thẳng
A. x = 0
B. y = 0
C. y = x
D. y = -x
Cho hai số phức w và z thỏa mãn w - 1 + 2 i = z . Biết tập hợp các điểm biểu diễn của số phức z là đường tròn tâm I(-2;3) bán kính r = 3. Tìm tập hợp các điểm biểu diễn của số phức
A. Là một đường thẳng song song trục tung
B. Là một đường thẳng không song song với trục tung
C. Là đường tròn, tọa độ tâm (-3;5) bán kính bằng 3 5
D. Là đường tròn, tọa độ tâm (-1;1) bán kính bằng 3
Biết {M} biểu diễn số phức Z là (d): x-y-2 = 0. Đặt W = Z+1-i. Tìm W m i n
A. W m i n = 2
B. W m i n = 2
C. W m i n = 2 2
D. W m i n = 4