Cho \(P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{2^{100}-1}\)
Chứng tỏ rằng P>50.
chứng tỏ rằng
C = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
D = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Phần C đề thiếu
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D=3-\frac{203}{3^{100}}\)
\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)
\(C=\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
\(\Rightarrow2C=1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(\Rightarrow2C+C=(1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}})+\)\((\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}})\)
\(\Rightarrow3C=1-\frac{1}{100}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{300}< \frac{1}{3}\left(đpcm\right)\)
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Chứng tỏ rằng \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{^{4^2}}+...+\frac{1}{49^2}+\frac{1}{50^2}
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}
Đặt tổng sau là B ta có:
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{49^2}+\frac{1}{50^2}\)
Ta lại có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{48.49}+\frac{1}{49.50}\)
\(\Rightarrow B< 1-\frac{1}{50}\)
\(\Rightarrow B< 1\)
Chứng tỏ rằng:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{49^2}+\frac{1}{50^2}<1\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{49^2}+\frac{1}{50^2}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{48.49}+\frac{1}{49.50}\)
< \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{48.49}+\frac{1}{49.50}=1-\frac{1}{50}
ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
\(.....................\)
\(\frac{1}{49^2}=\frac{1}{49.49}< \frac{1}{48.49}\)
\(\frac{1}{50^2}=\frac{1}{50.50}< \frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{49^2}+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{48.49}+\frac{1}{49.50}\)
ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{48.49}+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{49^2}+\frac{1}{50^2}< \frac{49}{50}\) ( 1 )
mà \(\frac{49}{50}< 1\) ( 2 )
từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{49^2}+\frac{1}{50^2}< 1\)
\(\Rightarrow\text{Đ}PCM\)
chứng minh rằng \(50< ,1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}< 100\)
chứng tỏ rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<1\)
Gọi biểu thức trên là A.
Ta có:
A < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
A < 1 - 1/100
A < 99/100
Mà 99/100 < 1
=> A < 1
đpcm
đúng nhé
gọi A=1/2^2+1/3^2+...+1/50^2
B=1/1.2+1/2.3+...+1/49.50
ta có:
A=1/2^2+1/3^2+...+1/50^2<B=1/1.2+1/2.3+...+1/49.50 (1)
mà B=1/1.2+1/2.3+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (2)
kết hợp từ (1) và (2) ta có: A<B<1
=>A<1 (đpcm)
Gọi tổng trên là A
A = 1/2.2 + 1/3.3 +.....+ 1/50.50
A < 1/1.2 + 1/2.3 +.....+ 1/49.50
A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50
A < 1 - 1/50
A < 49/50 < 1
=> A < 1 (đpcm)
ChoA=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}....+\frac{1}{49}-\frac{1}{50}\)
B=\(\frac{1}{25}+\frac{1}{26}+\frac{1}{27}.....+\frac{1}{50}\)
Chứng tỏ rằng A=B
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\Rightarrow A=B\text{(đpcm)}\)
bài này chắc mình không làm được rồi, xin lỗihihi
Chứng tỏ rằng
a) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
b) \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{3}{4}\)
c) \(\frac{1}{3}+\frac{3}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
Cho P=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\). Chứng tỏ rằng \(\frac{1}{15}< P< \frac{1}{10}\)
Ta có: \(P=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)
\(\Rightarrow P=\frac{1.2.3....99}{2.3.4...100}\)
\(\Rightarrow P=\frac{1}{100}\)
Ta có: 1/100<1/10 =>P <1/10
nhưng mà bạn ơi, 1/100 làm sao có thể lớn hơn 1/15 được, bạn có sai đề chỗ nào không?