Cho P : x + m z - m = 0 ; Q : 1 - m x - m y = 0 . Gọi ∆ = P ∩ Q . Khi đó:
Bài1: Cho x+y+z=0; xyz(x-y)(y-z)(z-x)#0. CMR: A=(x-y/z + y-z/x + z-x/y)(z/x-y + x/y-z + y/z-x) có giá trị ko đổi
Bài 2: CMR nếu x+y+z=m; 1/x +1/y +1/z=m thì (x-m)(y-m)(z-m)=0
cho a,b,c khác 0 và x,y,z t/m: a+b+c=x+y+z=x/a+y/b+z/c=0 C/m a^2x + b^2y + c^2z =0
Cho x,y,z thỏa mãn x+y+z=0; x+1>0; y+1>0 và z+4>0. Tìm GTLN của A=\(\frac{xy-1}{\left(x+1\right)\left(y+1\right)}+\frac{z}{z+4}\)
Đặt \(\left(x+1;y+1;z+4\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\a+b+c=6\end{matrix}\right.\)
\(A=\frac{\left(a-1\right)\left(b-1\right)-1}{ab}+\frac{c-4}{c}=\frac{ab-a-b}{ab}+\frac{c-4}{c}\)
\(A=2-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le2-\frac{\left(1+1+2\right)^2}{a+b+c}=2-\frac{16}{6}=-\frac{2}{3}\)
\(A_{max}=-\frac{2}{3}\) khi \(\left(a;b;c\right)=\left(\frac{3}{2};\frac{3}{2};3\right)\) hay \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)
Cho ba số x,y,z khác 0 thỏa mãn x+y+z=0.Tính C=2x.(x+y).(z+x)+y.(x+y).(y+z)/z.(x+z).(y+z).Mình đang cần gấp,cảm ơn các bạn
Giúp em làm bài tập trắc nghiệm và giải thích cách làm cho em với ngày mai em sắp thi rồi :((
Cho x+y+z=0 . Rút gọn biểu thức \(M=\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)\)
A,M=0
B,M=1
C,M=9
D,M=xyz
Bài này thế biến rồi rút gọn khá tốn thời gian, nhưng mình bảo bạn này, bạn chọn đại 3 giá trị x;y;z khác 0 và khác nhau thỏa mãn \(x+y+z=0\) ví dụ \(x=1;y=2;z=-3\) và thế vô M bấm máy được kết quả bằng 9
Chọn luôn C
cho x,y,z,t là các số tự nhiên khác 0 ta có
M=x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(x+z+t)
CMR M không là số tự nhiên khác 0
Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=>\(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=>M>1(1)
Lại có:
Áp dụng tính chất: Nếu \(\frac{a}{b}<1=>\frac{a}{b}<\frac{a+m}{b+m}\)
Ta có: \(\frac{x}{x+y+z}<\frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}<\frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}<\frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}<\frac{t+y}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=>\(M<\frac{2.\left(x+y+z+t\right)}{x+y+z+t}=2\)
=>M<2(2)
Từ (1) và (2)
=>1<M<2
=>M không là số tự nhiên
=>ĐPCM
cho x,y,z,t là các số tự nhiên khác 0 ta có
M=x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(x+z+t)
CMR M là số tự nhiên khác 0
Làm rõ ràng cho mình nhé xin đấy
nhấn vào chữ Đúng 0 sẽ có lời giải hiện ra
Cho x(m+n)=y(n+p)=z(p+n) trong đó x,y,z là các số khác nhau và khác 0.Cm:
m+n/x(y-x)=n-p/y(z+x)=p-m/z(x.y)