rút gọn biểu thức
3(x-y) + (y-2x +z) - ( x + 2y -z )
rút gọn biểu thức (x-2y-z)+(-2x+y-z)-(-x-y-2z)
được nghỉ thêm 2 tuần vẫn có bài
\(\left(x-2y-z\right)+\left(-2x+y-z\right)-\)\(\left(-x-y-2z\right)\)
\(=x-2y-z-2x+y-z+x+y+2z\)
\(=0\)
Rút gọn biểu thức:
A= (x^2-y)(y+1)+x^2y^2-1/(x^2+y)(y+1)+x^2y^2+1
B= x^2(y-z)+y^2(z-x)+z^2(x-y)/x^2y-x^2z+y^2z-y^3
đã tắt máy chưa để cho mình giải nha
cho biểu thức A = (x-y + z ) -(-z-y -x ) - 2y
a, rút gọn biểu thức A
b, tính giá trị của nó với x= 3. y=-1 , z=2
a) A = x - y + z + z + y + x - 2y
A = (x + x) + (-y + y) + (z + z) - 2y
A = 2x + 0 + 2z - 2y
A = 2 .(x + z - y)
b) Thay x = 3 ; y = -1 ; z = 2 vào biểu thức A , ta được :
A = 2 .[3 + 2 - (-1)]
A = 12
Vậy A = 12
Chúc bạn học tốt !
Rút gọn biểu thức:
A= (x^2-y)(y+1)+x^2y^2-1
(x^2+y)(Y+1)+x^2y^2+1
B =x^2(y-z)+y^2(z-x)+z^2(x-y)
x^2y-x^2z+y^2z-y^3
\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)
\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)
\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{x-z}{x+y}\)
\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)
\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)
\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)
\(=\frac{x^2-1}{x^2+1}\)
rút gọn biểu thức
A= (x^2-y)(y+1)+x^2y^2-1
(x^2+y)(Y+1)+x^2y^2+1
B =(y-z)+y^2(z-x)+z^2
x^2y-x^2z+y^2z-y^3
Bài 1 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 2 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
rút gọn biểu thức
3)C = (2x-3)^2-(x+4)(2x-1) -(x+3)^2
C = (2x-3)2-(x+4)(2x-1) -(x+3)2
(Chuyển đổi các hằng đẳng thức)
= (4x2-12x+9)-(2x2-x+8x-4)-(x2+6x+9)
= 4x2-12x+9-2x2+x-8x+4-x2-6x-9
(Ta thu gọn các hạng tử đồng dạng với nhau)
= x2-25x-14
Rút g
ọn (x - y + z)^2 + (z - y)^2 + (x - y + z)(2y -2z)
(x - y + z)^2 + (z - y)^2 + (x - y + z)(2y -2z)
\(<=>(x-y+z)^2+2(x-y+z)(y-z)+(z-y)^2\)
\(<=> (x-y+z+z-y)^2<=> ( x-2y-2z)^2\)
\(\left(x+y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
\(=\left(x+y+z+y-z\right)^2\)
\(=\left(x+2y\right)^2\)
cho a,b,c và x,y,z thỏa ax+by+cz=0. rút gọn A=bc(y-z)^2+ca(z-x)^2+ab(x-y)^2/a^2x^2+b^2y^2+c^2+z^2
Đặt B = \(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)
Từ \(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)
=>\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\)
=>\(a^2x^2+b^2y^2+c^2z^2=-2\left(bcyz+acxz+abxy\right)\) (2)
Thay (2) vào (1) ta được:
\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)
\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
Vậy \(A=\frac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)