Cho U = 2 . 2019 2020 , V = 2019 2020 , W = 2018 . 2019 2019 , X = 5 . 2019 2019 và Y = 2019 2019 . Số nào trong các số dưới đây là số bé nhất?
A.X-Y
B.U-V
C.V-W
D.W-X
cho a = 1 - 2019 /2020 + ( 2019/2020)^2 -(2019-2020)^3 +....+(2019/2020) ^2020 chứng tỏ a ko phải là một số nguyên
Ta có:
\(a=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\)
=> \(\frac{2019}{2020}.a=\frac{2019}{2020}-\left(\frac{2019}{2020}\right)^2+\left(\frac{2019}{2020}\right)^3-...+\left(\frac{2019}{2020}\right)^{2020}-\left(\frac{2019}{2020}\right)^{2021}\)
Lấy
\(a+\frac{2019}{2020}a=1-\left(\frac{2019}{2020}\right)^{2021}\)
<=> \(a\left(1+\frac{2019}{2020}\right)=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.\frac{4039}{2020}=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}\)
Vì : \(0< \left(\frac{2019}{2020}\right)^{2021}< 1\)
=> \(0< 1-\left(\frac{2019}{2020}\right)^{2021}< 1\)
và \(0< \frac{2020}{4039}< 1\)
=> \(0< \left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}< 1\)
=> 0 < a < 1
=> a không phải là một số nguyên.
toan lop may vay ban ?
Cho A=2020/20192+1 + 2020/20192+2 + 2020/20192+3 + ... + 2020/20192+2019. CMR 1<S<2.
Giúp tôi với! Tôi sẽ tick cho
lên mạng bạn ạ
bạn k đúng cho mìn nha
cho A=2^2018/2^2018 +3^2019 + 3^2019/3^2019+5^2020 + 5^2020/5^2020+2^2018
cho B=1/1x2+1/3x4+1/4x5+...+1/2019x1/2020 so sánh A và B làm nhanh nha các bạnSo sánh
A. √2021 - √2020 và √2020 - √2019
B. √2019×2021 và 2020
C. √2019 + √2021 và 2√2020
a) Ta có: \(\sqrt{2021}-\sqrt{2020}\)
\(=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)
\(=\frac{1}{\sqrt{2020}+\sqrt{2021}}\)
Ta có: \(\sqrt{2020}-\sqrt{2019}\)
\(=\frac{\left(\sqrt{2020}-\sqrt{2019}\right)\left(\sqrt{2020}+\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}\)
\(=\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
Ta có: \(\sqrt{2020}+\sqrt{2021}>\sqrt{2019}+\sqrt{2020}\)
\(\Leftrightarrow\frac{1}{\sqrt{2020}+\sqrt{2021}}< \frac{1}{\sqrt{2019}+\sqrt{2020}}\)
hay \(\sqrt{2021}-\sqrt{2020}< \sqrt{2020}-\sqrt{2019}\)
b) Ta có: \(\sqrt{2019\cdot2021}\)
\(=\sqrt{\left(2020-1\right)\left(2020+1\right)}\)
\(=\sqrt{2020^2-1}\)
Ta có: \(2020=\sqrt{2020^2}\)
Ta có: \(2020^2-1< 2020^2\)
nên \(\sqrt{2020^2-1}< \sqrt{2020^2}\)
\(\Leftrightarrow\sqrt{2019\cdot2021}< 2020\)
c) Ta có: \(\left(\sqrt{2019}+\sqrt{2021}\right)^2\)
\(=2019+2021+2\cdot\sqrt{2019\cdot2021}\)
\(=4040+2\sqrt{2019\cdot2021}\)
\(=4040+2\cdot\sqrt{2020^2-1}\)
Ta có: \(\left(2\sqrt{2020}\right)^2\)
\(=4\cdot2020\)
\(=4040+2\cdot2020\)
\(=4040+2\cdot\sqrt{2020^2}\)
Ta có: \(2020^2-1< 2020^2\)
\(\Leftrightarrow\sqrt{2020^2-1}< \sqrt{2020^2}\)
\(\Leftrightarrow2\cdot\sqrt{2020^2-1}< 2\cdot\sqrt{2020^2}\)
\(\Leftrightarrow4040+2\cdot\sqrt{2020^2-1}< 4040+2\cdot\sqrt{2020^2}\)
\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\)
\(\Leftrightarrow\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
Cho A= \(\frac{2020}{2019^2+1}+\frac{2020}{2019^2+2}+\frac{2020}{2019^2+3}+...+\frac{2020}{2019^2+2019}\)
Chứng minh rằng A ko thể là số tự nhiên.
Ta có bài toán tổng quát sau:Chứng minh rằng tổng \(A=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}\)(n số hạng và n>1) không phải là số nguyên dương ta có:
\(1=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+...+\frac{n+1}{n^2+3}< \frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}< \frac{n+1}{n^2}+\frac{n+1}{n^2}\)\(+....+\frac{n+1}{n^2}=2\)
Do đó A không phải là số nguyên dương với n=2019 thì ta có bài toán đã cho
A=2020/20192+1 + 2020/20192+2 + 2020/20192+3 + ... + 2020/20192+2019. CMR 1<A<2.
Mục tiêu -500 sp mong giúp đỡ
Bài 1 : So sánh các số sau :
a) 20202020-20202019 và 20202019-20202018
b) (20192019+20202019 )2020 và (20192020+20202020)2019
Bài 2 : Cho (a,b) =1. CMR : các số sau cũng nguyên tố cùng nhau :
a) b và a-b (a>b)
b) a2 + b2 và ab
So sánh A và B
A = \(\left(2020^{2019}+2019^{2019}\right)^{2020}\)
B = \(\left(2020^{2020}+2019^{2020}\right)^{2019}\)
Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)
\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)
\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)
\(\Leftrightarrow A>B\)
\(\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)với B=\(\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
\(A=\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)
\(B=\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
Ta có :
\(A-B=\dfrac{2020^{2018}-1}{2020^{2019}+2019}-\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
\(\Rightarrow A-B=\dfrac{\left(2020^{2018}-1\right)\left(2020^{2020}+2019\right)-\left(2020^{2019}+2019\right)\left(2020^{2019}+1\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{2020^{4038}+2019.2020^{2018}-2020^{2020}-2019-2020^{4038}-2020^{2019}-2019.2020^{2018}-2029}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{-\left(2020^{2020}+2020^{2019}+2.2019\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
mà \(\left\{{}\begin{matrix}-\left(2020^{2020}+2020^{2019}+2.2019\right)< 0\\\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)>0\end{matrix}\right.\)
\(\Rightarrow A-B< 0\)
\(\Rightarrow A< B\)
Vậy ta được \(A< B\)
Cho A=2020/20192+1 + 2020/20192+2 + 2020/20192+3 + ... + 2020/20192+2019. CMR A không là STN(Gợi ý: CMR 1<S<2)
Please help me, T3 tuần sau nộp rồi!
Cảm ơn trước nhé!