Gía trị của m để phương trình x 4 - 8 x 2 + 3 - 4 m = 0 có 4 nghiệm thực phân biệt là:
A. - 13 4 ≤ m ≤ 3 4
B. - 13 4 < m < 3 4
C. m ≤ 3 4
D. m ≥ - 13 4
có bao nhiêu gía trị nguyên để phương trình \(\sqrt{x+2}+\sqrt{2-x}+2\sqrt{-x^2+4}+2m+3=0\) có nghiệm
TXĐ: D=\(\left[-2;2\right]\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=a\ge0\Rightarrow a^2=4+2\sqrt{-x^2+4}\)
Khi đó: pt trở thành: \(a+a^2+2m-1=0\) (*)
để pt đã cho có nghiệm thì pt(*) có nghiệm
khi đó \(\Delta=1^2-4\left(2m-1\right)=-8m+2\ge0\Rightarrow m\le\dfrac{1}{4}\)
???
2. Cho phương trình x ^ 2 - 2x + m - 1 = 0 (m là tham số), Tìm các giá trị của m để phương trình có hai nghiệm x 1 ,x2 thỏa măm hệ thức x 1 ^ 4 -x 1 ^ 3 =x 2 ^ 4 -x 2 ^ 3
Bài 4. Cho biểu thức M = \(\dfrac{\sqrt{x+2}}{2\sqrt{x}-3}\)với 𝑥 ≥ 0; 𝑥 ≠ 9 4 . Tìm gía trị nguyên của x để M có giá trị là một số tự nhiên
Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$
$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$
$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$
Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên
$\Rightarrow 3M-2\vdots 2M-1$
$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$
$\Rightarrow 2M-1\in\left\{\pm 1\right\}$
$\Rightarrow M=0;1$
$\Leftrightarrow x=4; 1$ (đều tm)
Giá trị của m để phương trình x^3-(m+2)*x^2+(m+1)*x+4=0 nhận x=2 làm nghiệm
1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0
a) Giải phương trình với m = -2
b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1
c) Tìm các giá trị của m để phương trình trên có nghiệm kép
2.Xác định m để mỗi cặp phương trình sau có nghiệm chung
a) x2 + mx +2 = 0 và x2 +2x + m = 0
b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0
3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0
a) Giải phương trình với m = - 2
b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt
c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2
4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0
a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất
b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất
c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất
Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
tìm tất cả các giá trị nguyên của tham số m để bất phương trình x^2 -2.(m-1).x+4.m+8>=0 nghiệm đúng với mọi x thuộc R
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow m^2-6m-7\le0\)
\(\Rightarrow-1\le m\le7\)
\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)
Câu 10: Nghiệm của phương trình 2x( x + 1 ) = x2 - 1 là?
A. x = - 1. B. x = ± 1.
C. x = 1. D. x = 0.
Câu 11: Giá trị của m để phương trình ( x + 2 )( x - m ) = 4 có nghiệm x = 2 là?
A. m = 1. B. m = ± 1.
C. m = 0. D. m = 2.
Câu 12: Giá trị của m để phương trình x3 - x2 = x + m có nghiệm x = 0 là?
A. m = 1. B. m = - 1.
C. m = 0. D. m = ± 1.
Câu 13: Giải phương trình: x2 - 5x + 6 = 0
A. x = 3 hoặc x = 2
B. x= -2 hoặc x = -3
C. x = 2 hoặc x = -3
D. x = -2 hoặc x = 3
Câu 14: Giải phương trình:
Câu 15: Giải phương trình: 3(x - 2) + x2 - 4 = 0
A. x = 1 hoặc x = 2
B. x = 2 hoặc x = -5
C. x = 2 hoặc x = - 3
Câu 16: Diện tích hình chữ nhật thay đổi như thế nào nếu chiều rộng tăng 4 lần, chiều dài giảm 2 lần ?
A. Diện tích không đổi.
B. Diện tích giảm 2 lần.
C. Diện tích tăng 2 lần.
D. Cả đáp án A, B, C đều sai.
Câu 17: Cho hình chữ nhật có chiều dài là 4 cm, chiều rộng là 1,5 cm. Diện tích của hình chữ nhật đó là ?
A. 5( cm ) B. 6( cm2 )
C. 6( cm ) D. 5( cm2 )
Câu 18: Cho hình vuông có độ dài cạnh hình vuông là 4 cm. Diện tích của hình vuông đó là?
A. 8( cm ). B. 16( cm )
C. 8( cm2 ) D. 16( cm2 )
Câu 19: Cho tam giác vuông, có độ dài hai cạnh góc vuông lần lượt là 6cm, 4cm. Diện tích của tam giác vuông đó là ?
A. 24( cm2 ) B. 14( cm2 )
C. 12( cm2 ) D. 10( cm2 )
Câu 20: Cho hình vuông có đường chéo là 6( dm ) thì diện tích là ?
A. 12( cm2 ) B. 18( cm2 )
C. 20( cm2 ) D. 24( cm2 )
Câu 21:Tam giác có độ dài cạnh đáy bằng a , độ dài đường cao là h. Khi đó diện tích tam giác được tính bằng công thức ?
A. a.h B. 1/3ah
C. 1/2ah D. 2ah
Câu 10: A
Câu 11: A
Câu 12: C
Câu 13: A
Câu 15: B
Câu 16: C
Câu 17: B
Câu 18: D
x^2 - 2(m-2)x + m^2 - 3m + 5=0.
Giải phương trình với m=3
b) Tìm giá trị của m để phương trình có nghiệm No =-4
c) Tìm m để phương trình có nghiệm kép
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
3.
Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)
\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)
\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)
Mặt khác:
\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)
\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)
(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)