Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chan
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 18:19

a.

Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)

Với mọi m, ta có:

\(y_0=\left(m+2\right)x_0+m\)

\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)

b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)

Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

Linh
Xem chi tiết
hưng đỗ
Xem chi tiết
Nguyễn Đức Trí
23 tháng 9 2023 lúc 7:46

a) \(\left(d\right):y=\left(m-2\right)x+m+3\)

Gọi \(A\left(x_o;y_o\right)\) là điểm cố định mà \(\left(d\right)\) đi qua, nên ta có :

\(y_o=\left(m-2\right)x_o+m+3,\forall m\in R\)

\(\Leftrightarrow y_o=mx_o-2x_o+m+3,\forall m\in R\)

\(\Leftrightarrow mx_o+m+2x_o+y_o-3=0,\forall m\in R\)

\(\Leftrightarrow\left(x_o+1\right)m+\left(2x_o+y_o-3\right)=0,\forall m\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o+1=0\\2x_o+y_o-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-1\\y_o=5\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)

Vậy Với mọi m, đường thẳng \(\left(d\right)\) luôn đi qua điểm cố định \(A\left(-1;5\right)\)

b) Gọi \(\left\{{}\begin{matrix}\left(d\right)\cap Ox=A\\\left(d\right)\cap Oy=B\end{matrix}\right.\)

Tọa độ điểm \(A\) thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\y=\left(m-2\right)x+m+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2-m}\\y=0\end{matrix}\right.\)

\(\Rightarrow A\left(\dfrac{m+3}{2-m};0\right)\)

\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m+3}{2-m}\right)^2}=\left|\dfrac{m+3}{2-m}\right|\)

Tọa độ điểm \(B\) thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(m-2\right)x+m+3\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=m+3\end{matrix}\right.\) \(\Rightarrow B\left(0;m+3\right)\)

\(\Rightarrow OB=\sqrt[]{\left(m+3\right)^2}=\left|m+3\right|\)

\(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA.OB=2\)

\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|.\left|m+3\right|=4\)

\(\Leftrightarrow\left(m+3\right)^2=4\left|2-m\right|\left(1\right)\)

\(TH1:2-m>0\Leftrightarrow m< 2\)

\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(2-m\right)\)

\(\Leftrightarrow m^2+6m+9=8-4m\)

\(\Leftrightarrow m^2+10m+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\left(tm\right)\\m=-5-2\sqrt[]{6}\left(tm\right)\end{matrix}\right.\)

\(TH2:2-m< 0\Leftrightarrow m>2\)

\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(m-2\right)\)

\(\Leftrightarrow m^2+6m+9=4m-8\)

\(\Leftrightarrow m^2+2m+17=0\)

\(\Leftrightarrow\) Phương trình vô nghiệm

Vậy \(\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\\m=-5-2\sqrt[]{6}\end{matrix}\right.\) thỏa mãn đề bài

Minh Tuấn Phạm
Xem chi tiết
Trần Thị Kim Ngân
Xem chi tiết
Nguyễn Thị Ngọc Trinh
7 tháng 11 2017 lúc 12:15

Bài 3 làm sao v ạ?

Trần Mai Linh Nhi
Xem chi tiết
Hương Linh
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 22:46

a: Để (d) cắt (d') tại một điểm nằm trên trục tung thì

\(\left\{{}\begin{matrix}-2m+1< >2\\-m+1=m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m< >1\\-m-m=3-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >-\dfrac{1}{2}\\-2m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m< >-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-1\)

b: (d): \(y=-\left(2m-1\right)x-m+1\)

\(=-2mx+x-m+1\)

\(=m\left(-2x-1\right)+x+1\)

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}-2x-1=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=1\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}+1=\dfrac{1}{2}\end{matrix}\right.\)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-\left(2m-1\right)x-m+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\left(-2m+1\right)x=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{m-1}{-2m+1}\end{matrix}\right.\)

=>\(A\left(\dfrac{m-1}{-2m+1};0\right)\)

\(OA=\sqrt{\left(\dfrac{m-1}{-2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-1}{2m-1}\right)^2}=\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-\left(2m-1\right)\cdot x-m+1=-\left(2m-1\right)\cdot0-m+1=-m+1\end{matrix}\right.\)

vậy: B(0;-m+1)

\(OB=\sqrt{\left(0-0\right)^2+\left(-m+1-0\right)^2}=\sqrt{\left(-m+1\right)^2}\)

\(=\left|m-1\right|\)

Vì ΔOAB vuông tại O nên \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\)

\(=\dfrac{1}{2}\cdot\left|m-1\right|\cdot\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)

\(=\dfrac{\dfrac{1}{2}\left(m-1\right)^2}{\left|2m-1\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=1\)

=>\(\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=2\)

=>\(\left(m-1\right)^2=2\left|2m-1\right|\)(1)

TH1: m>1/2

Phương trình (1) sẽ tương đương với \(\left(m-1\right)^2=2\left(2m-1\right)\)

=>\(m^2-2m+1=4m-2\)

=>\(m^2-6m+3=0\)

=>\(\left[{}\begin{matrix}m=3+\sqrt{6}\left(nhận\right)\\m=3-\sqrt{6}\left(nhận\right)\end{matrix}\right.\)

TH2: m<1/2

Phương trình (2) sẽ tương đương với:

\(\left(m-1\right)^2=2\left(-2m+1\right)\)

=>\(m^2-2m+1=-4m+2\)

=>\(m^2-2m+1+4m-2=0\)

=>\(m^2+2m-1=0\)

=>\(\left[{}\begin{matrix}m=-1+\sqrt{2}\left(nhận\right)\\m=-1-\sqrt{2}\left(nhận\right)\end{matrix}\right.\)