Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 1:01

Khoảng giá trị của x mà đồ thị hàm số \(y=log_2x\) nằm phía trên đường thẳng y = 2 là \(\left(4;+\infty\right)\)

\(\Rightarrow\) Tập nghiệm của bất phương trình \(log_2x>2\) là \(\left(4;+\infty\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2017 lúc 2:26

Chọn D

y   =   log ( x 2 - 2 m x + 4 )

Điều kiện xác định của hàm số trên 

Để tập xác định của hàm số là thì 

Vậy đáp án đúng là đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2017 lúc 8:23

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 9 2023 lúc 20:06

a: 

x0,51248
\(y\)-10123

b:

c: Tọa độ giao điểm của hàm số với trục hoành là B(2;0)

Đồ thị hàm số này ko cắt trục tung

d: 

\(\lim\limits_{x\rightarrow0^+}log_2x=0\)

\(\lim\limits_{x\rightarrow+\infty}\left(log_2x\right)=+\infty\)

=>Hàm số này đồng biến trên TXĐ của nó là D=[0;+vô cực)

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 0:57

a, \(y=log\left|x+3\right|\) có nghĩa khi \(\left|x+3\right|>0\)

Mà \(\left|x+3\right|\ge0\forall x\in R\)

\(\Rightarrow\) \(\left|x+3\right|>0\) khi \(x\ne-3\)

Vậy tập xác định của hàm số là D = R \ {-3}.

b, \(y=ln\left(4-x^2\right)\) có nghĩa khi \(4-x^2>0\)

\(\Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\)

Vậy tập xác định của hàm số là D = (-2;2).

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 11:31

\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2017 lúc 16:22

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2018 lúc 10:15

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2017 lúc 6:40

Nguyễn Hoàng Anh
Xem chi tiết
Akai Haruma
25 tháng 11 2023 lúc 23:48

Lời giải:

TXĐ: $[0; +\infty)\setminus\left\{4\right\}$

$y=\frac{\sqrt{x}-2}{x-4}=\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{1}{\sqrt{x}+2}$
Ta có:

$\sqrt{x}\geq 0\Rightarrow y\leq \frac{1}{2}$ với mọi $x\in TXĐ$

$\sqrt{x}+2>0$ với mọi $x\in TXĐ$ nên $y>0$ với mọi $x\in TXĐ$
Vậy TGT của hàm số là $(0; \frac{1}{2}]$