Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2017 lúc 16:22

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2018 lúc 10:15

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2017 lúc 6:40

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2018 lúc 5:21

Chọn A

Điều kiện xác định: 

Vậy tập xác định của hàm số (1) là 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 2 2018 lúc 7:05

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 0:57

a, \(y=log\left|x+3\right|\) có nghĩa khi \(\left|x+3\right|>0\)

Mà \(\left|x+3\right|\ge0\forall x\in R\)

\(\Rightarrow\) \(\left|x+3\right|>0\) khi \(x\ne-3\)

Vậy tập xác định của hàm số là D = R \ {-3}.

b, \(y=ln\left(4-x^2\right)\) có nghĩa khi \(4-x^2>0\)

\(\Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\)

Vậy tập xác định của hàm số là D = (-2;2).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 11 2019 lúc 4:00

Chọn: C

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 11:31

\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 12:29

a, Điều kiện: \(2^x\ne3\Rightarrow x\ne log_23\)

Vậy D = R \ \(log_23\)

b, Điều kiện: \(25-5^x\ge0\Rightarrow5^x\le5^2\Rightarrow x\le2\)

Vậy D = \((-\infty;2]\)

Hà Quang Minh
22 tháng 8 2023 lúc 12:32

c, Điều kiện: \(\left\{{}\begin{matrix}x>0\\lnx\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\ne e\end{matrix}\right.\)

Vậy D = \(\left(0;+\infty\right)\backslash\left\{e\right\}\)

d, Điều kiện: \(\left\{{}\begin{matrix}x>0\\1-log_3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\log_3x\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3\end{matrix}\right.\Rightarrow0< x\le3\)

Vậy D = \((0;3]\)

Buddy
Xem chi tiết
Mai Trung Hải Phong
22 tháng 8 2023 lúc 16:35

a) \(log_2\left(3-2x\right)\) xác định khi \(3-2x>0\) hay \(x< \dfrac{3}{2}\)

b) \(log_3\left(x^2+4x\right)\) xác định khi \(x^2+4x>0\) hay \(x>0\) hoặc \(x< -4\)