Căn bậc hai số học của 9 là
a. 3, 81
b. -3
c. 81
Căn bậc hai số học của -81 là ?
A. 9
B. -9
C. ± 9
D. Không xác định
Chọn đáp án D.
Không tồn tại căn bậc hai số học của số âm
Tìm căn bậc hai số học của mỗi số sau: 81
Từ các số là bình phương của 12 số tự nhiên đầu tiên, em hãy tìm căn bậc hai số học của các số sau:
a) 9; b) 16;
c) 81; d) 121
a) Vì \({3^2} = 9\) và 3 > 0 nên \(\sqrt 9 = 3\)
b) Vì \({4^2} = 16\) và 4 > 0 nên \(\sqrt {16} = 4\)
c) Vì \({9^2} = 81\) và 9 > 0 nên \(\sqrt {81} = 9\)
d) Vì \({11^2} = 121\) và 11 > 0 nên \(\sqrt {121} = 11\)
a) Đọc các số sau: \(\sqrt {15} ;\sqrt {27,6} ;\sqrt {0,82} \)
b) Viết các số sau: căn bậc hai số học của 39; căn bậc hai số học của \(\frac{9}{{11}}\); căn bậc hai số học của \(\frac{{89}}{{27}}\)
a) \(\sqrt {15} \) đọc là: căn bậc hai số học của mười lăm
\(\sqrt {27,6} \) đọc là: căn bậc hai số học của hai mươi bảy phẩy sáu
\(\sqrt {0,82} \) đọc là: căn bậc hai số học của không phẩy tám mươi hai
b) Căn bậc hai số học của 39 viết là: \(\sqrt {39} \)
Căn bậc hai số học của \(\frac{9}{{11}}\) viết là: \(\sqrt {\frac{9}{{11}}} \)
Căn bậc hai số học của \(\frac{{89}}{{27}}\) viết là: \(\sqrt {\frac{{89}}{{27}}} \)
Tìm căn bậc hai số học của mỗi số sau:
a) 49; b) 64; c) 81; d) 1,21.
Câu 6: Trong các khẳng định sau, khẳng định nào sai?
A. Căn bậc hai của 9 là 3 C. Căn bậc hai của 5 là √5 và -√5
B. Số 3 là căn bậc hai của 9 D. Số -3 là căn bậc hai của 9
Số 9 có căn bậc 2 là: A.3 B.81 C.81; -81 D.3; -3
Chọn A
vì căn bậc 2 của chín tức là √9 = 3
căn bậc hai của a+2b+3c + căn bậc hai của b+2c+3a+ căn bậc hai của c+2a+3b lớn hơn hoặc bằng căn bậc hai của 6 nhân ( căn a + căn b + căn c)
Chứng tỏ rằng:
a) Số 0,8 là căn bậc hai số học của số 0,64
b) Số -11 không phải là căn bậc hai số học của số 121
c) Số 1,4 là căn bậc hai số học của số 1,96 nhưng –1,4 không phải là căn bậc hai số học của số 1,96.
a) Vì 0,8 > 0 và \(0,{8^2} = 0,64\) nên số 0,8 là căn bậc hai số học của số 0,64
b) Vì tuy \({( - 11)^2} = 121\) nhưng -11 < 0 nên số -11 không phải là căn bậc hai số học của số 121
c) Vì \(1,{4^2} = 1,96\) và 1,4 > 0 nên số 1,4 là căn bậc hai số học của số 1,96
Nhưng vì -1,4 < 0 nên –1,4 không phải là căn bậc hai số học của số 1,96.