Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hàn Nhật Hạ
Xem chi tiết
Quách Minh Hương
Xem chi tiết
Dream Anna
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 12 2021 lúc 13:47

\(\left(x^2-x^3+1\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^2-x^3\right)^k=\sum\limits^{10}_{k=0}C_{10}^k\sum\limits^k_{i=0}C_k^i.\left(x^2\right)^i.\left(-x^3\right)^{k-i}\)

\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^k.C_k^i.\left(-1\right)^{k-i}.x^{3k-i}\)

Số hạng chứa \(x^{10}\) thỏa mãn:

\(\left\{{}\begin{matrix}0\le k\le0\\0\le i\le k\\3k-i=10\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(2;4\right);\left(5;5\right)\)

\(\Rightarrow\) Hệ số: \(C_{10}^4.C_4^2+C_{10}^5.C_5^5=...\)

Hiệu Phương
Xem chi tiết
Akai Haruma
11 tháng 3 2021 lúc 1:43

Lời giải:

Theo khai triển Newton thì:

\((3x^2+x+1)^{10}=\sum \limits_{k=0}^{10}C^k_{10}(3x^2)^{10-k}(x+1)^k=\sum\limits_{k=0}^{10}[C^k_{10}(3x^2)^{10-k}\sum \limits_{p=0}^kC^p_kx^p]\)

Để tìm hệ số của $x^4$ ta cần tìm $p,k$ sao cho:

$0\leq p\leq k\leq 10$ và $2(10-k)+p=4$

Dễ dàng tìm được $(k,p)=(8,0), (9,2), (10,4)$

Do đó, hệ số của $x^4$ là"

$3^2.C^8_{10}.C^{0}_8+3C^9_{10}.C^2_9+C^{10}_{10}.C^4_{10}=1695$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 6 2017 lúc 6:18

Đáp án B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2019 lúc 11:57

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2017 lúc 8:07

Chọn A

( 1   +   x   +   x 2   +   x 3 ) 10  

Ta có các cặp (k;m): 2k + m = 5

Suy ra hệ số của số hạng chứa  x 5 là: 

lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 23:36

Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:

a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)

Số hạng chứa \(x^8\) có:

\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)

Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)

b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)

\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)

Số hạng chứa \(x^5\) có:

\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)

Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2019 lúc 12:22