Cho ∫ 0 2 x ln x + 1 2017 d x = a b ln 3 , ( a b là phân số tối giản, b>0). Tính S=a-b
A. 6049
B. 6053
C. 1
D. 5
Cho hàm số f(x)=ln2018-ln(x+1 / x).Tính S=f’(1)+f’(2)+f’(3)+…+f’(2017)
A. 4035 2018
B. 2017
C. 2016 2017
D. 2017 2018
Tính các tích phân sau: 1) 2 ln e e x dx ; 2) 1 3 2 0 4 x dx x ; 3) /2 /4 1 tan dx x ; 4) 1 0 x e dx ; 5) 2 1 x xe dx ; 6) 0 1 3 4 dx x ; 7) 2 1 4 4 5 dx x x ; 8) 2 0 ln 1 x dx x (HD: 1 u x ) ĐS: 1) 2 e ; 2) 16 7 5 3 ; 3) ln 2 ; 4) 2
Giúp em giải những câu này với ạ. Em cảm ơn ạ.
Giải phương trình:
a)\(log_{2017}x+log_{2016}x=0\)
b)\(\dfrac{x^3-5x^2+6x}{ln\left(x-1\right)}=0\)
a/ ĐK x>0
\(log_{2017}x+log_{2016}x=0\Leftrightarrow\dfrac{lnx}{ln2017}+\dfrac{lnx}{ln2016}=0\)
\(\Leftrightarrow lnx\left(\dfrac{1}{ln2017}+\dfrac{1}{ln2016}\right)=0\Leftrightarrow lnx=0\Rightarrow x=1\)
b/ ĐK \(\left\{{}\begin{matrix}x-1>0\\x-1\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
\(x^3-5x^2+6x=0\Leftrightarrow x\left(x^2-5x+6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=2\left(l\right)\\x=3\end{matrix}\right.\) \(\Rightarrow x=3\)
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
a) Bất phương trình đã cho tương đương với hệ sau:
Vậy tập nghiệm là (−1;0) ∪ (7/2; + ∞ )
b) Tương tự câu a), tập nghiệm là (1/10; 5)
c) Đặt t = log 2 x , ta có bất phương trình 2 t 3 + 5 t 2 + t – 2 ≥ 0 hay (t + 2)(2 t 2 + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2
Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ 2
Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [ 2 ; + ∞ )
d) Bất phương trình đã cho tương đương với hệ:
Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; + ∞ )
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1\) và \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\). Dùng định nghĩa tính đạo hàm của các hàm số:
a) \(y = {e^x}\);
b) \(y = \ln x\).
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0} + \Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.{e^{\Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.\left( {{e^{\Delta x}} - 1} \right)}}{{\Delta x}}\\ & = \mathop {\lim }\limits_{\Delta x \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} = {e^{{x_0}}}.1 = {e^{{x_0}}}\end{array}\)
Vậy \({\left( {{e^x}} \right)^\prime } = {e^x}\) trên \(\mathbb{R}\).
b) Với bất kì \({x_0} > 0\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln {\rm{x}} - \ln {{\rm{x}}_0}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {{x_0} + \Delta x} \right) - \ln {{\rm{x}}_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {\frac{{{x_0} + \Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}}\end{array}\)
Đặt \(\frac{{\Delta x}}{{{x_0}}} = t\). Lại có: \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}} = \frac{1}{{{x_0}}};\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\)
Vậy \(f'\left( {{x_0}} \right) = \frac{1}{{{x_0}}}.1 = \frac{1}{{{x_0}}}\)
Vậy \({\left( {\ln x} \right)^\prime } = \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).
a) Sử dụng giới hạn \(\mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\) và đẳng thức \(\ln \left( {x + h} \right) - \ln x = \ln \left( {\frac{{x + h}}{x}} \right) = \ln \left( {1 + \frac{h}{x}} \right),\) tính đạo hàm của hàm số \(y = \ln x\) tại điểm x > 0 bằng định nghĩa.
b) Sử dụng đẳng thức \({\log _a}x = \frac{{\ln x}}{{\ln a}}\,\,\left( {0 < a \ne 1} \right),\) hãy tính đạo hàm của hàm số \(y = {\log _a}x.\)
a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)
Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)
b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)
Cho x(x+14)(x+2)(x+3)(...)(x+2017)=2017(với x>0). Chứng minh rằng x<\(\frac{1}{2017!}\)
Giả sử F(x) là một nguyên hàm của f ( x ) = ln ( x + 3 ) x 2 sao cho F(-2)+F(1)=0. Giá trị của F(-1)+F(2) bằng
B. 0
Cho các mệnh đề sau:
(I). Nếu a = b c t h ì 2 ln a = ln b + ln c
(II). Cho số thực 0 < a ≠ 1. Khi đó a - 1 log a x ≥ 0 ⇔ x ≥ 1
(III). Cho các số thực 0 < a ≠ 1 , b > 0 , c > 0 . Khi đó b log a c ≥ 0 ⇔ x ≥ 1
(IV). l i m x → + ∞ 1 2 x = - ∞ .
Số mệnh đề đúng trong các mệnh đề trên là
A. 3
B. 4
C. 2
D. 1
Chọn C.
Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.
Cách giải:
Giải các phương trình sau :
a) \(\ln\left(4x+2\right)-\ln\left(x-1\right)=\ln x\)
b) \(\log_2\left(3x+1\right)\log_3x=2\log_2\left(3x+1\right)\)
c) \(2^{\log_3x^2}.5^{\log_3x}=400\)
d) \(\ln^3x-3\ln^2x-4\ln x+12=0\)
a) Điều kiện: \(\left\{{}\begin{matrix}4x+2>0\\x-1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>1\)
Khi đó biến đổi pương trình như sau:
\(\ln\dfrac{4x+2}{x-1}=\ln x\)
\(\Leftrightarrow\dfrac{4x+2}{x-1}=x\)
\(\Leftrightarrow4x+2=x\left(x-1\right)\)
\(\Leftrightarrow x^2-5x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{33}}{2}\\x_2=\dfrac{5-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(x=\dfrac{5+\sqrt{33}}{2}\)
b) Điều kiện: \(\left\{{}\begin{matrix}3x+1>0\\x>0\end{matrix}\right.\)
Hay là: \(x>0\)
Biến đổi phương trình như sau:
\(\log_2\left(3x+1\right)\log_3x-2\log_2\left(3x+1\right)=0\)
\(\Leftrightarrow\log_2\left(3x+1\right)\left(\log_3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\log_2\left(3x+1\right)=0\\\log_3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=2^0\\x=3^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=9\end{matrix}\right.\)
Vậy nghiệm là x = 9.
c) Điều kiện: x > 0.
Khi đó biến đổi phương trình như sau:
\(2^{\log_3x^2}.5^{\log_3x}=400\)
\(\Leftrightarrow2^{2\log_3x}.5^{\log_3x}=400\)
\(\Leftrightarrow\left(2^2.5\right)^{\log_3x}=400\)
\(\Leftrightarrow20^{\log_3x}=20^2\)
\(\Leftrightarrow\log_3x=2\)
\(\Leftrightarrow x=3^2=9\) (thỏa mãn)