Nhân hai số hữu tỉ: 12. − 2 3 2
Câu 1:Định nghĩa số hữu tỉ? Cách biểu diễn số hữu tỉ trên trục số? Câu 2: Phát biểu qui tắc cộng, trừ, nhân, chia hai số hữu tỉ? Qui tắc chuyển vế Câu 3: Giá trị tuyệt đối của số hữu tỉ x được xác định như thế nào? Câu 4: Viết các công thức: nhân, chia hai lũy thừa cùng cơ số. Lũy thừa của: Lũy thừa, một tích, một thương. Câu 5: Tỉ lệ thức là gì? Tính chất cơ bản của tỉ lệ thức. Viết công thức tính chất của dãy tỉ số bằng nhau?
Nhân, chia hai số hữu tỉ 1 , 75 : − 12 ⋅ − 2 3
1 , 75 : − 12 ⋅ − 2 3 = 7 4 . − 1 12 . − 2 3 = 7 72
Nhân, chia hai số hữu tỉ
− 3 4 ⋅ 12 − 5 : − 25 16
− 3 4 ⋅ 12 − 5 : − 25 16 = − 3 4 ⋅ 12 − 5 ⋅ − 16 25 = 9 5 . − 16 25 = − 144 125
1) Nếu quy tắc chuyển vế
2) Nêu định nghĩa nhân hai số hữu tỉ
3) Nêu nhận xét giá trị tuyệt đối của 1 số hữu tỉ
1) Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức , ta phải đổi dấu số hạng đó
Với mọi \(x,y,z\in Q:x+y=z\Rightarrow x=z-y\)
2) Với \(x=\frac{a}{b},y=\frac{c}{d}\) Ta có : \(x.y=\frac{a}{b}.\frac{c}{d}=\frac{a.c}{b.d}\)
3) Với mọi \(x\in Q\) ta luôn có : \(\left|x\right|\ge0,\left|x\right|=\left|-x\right|\) và \(\left|x\right|\ge x\)
Nhân hai số hữu tỉ: ( − 2 ) ⋅ − 38 21 ⋅ − 7 4 ⋅ − 3 8
( − 2 ) ⋅ − 38 21 ⋅ − 7 4 ⋅ − 3 8 = ( − 2 ) . ( − 38 ) . ( − 7 ) . ( − 3 ) 21.4.8 = 2.38.7.3 21.4.8 = 19 8 = 2 3 8
a) Trong các số hữu tỉ sau, số nào là số hữu tỉ dương, số nào là số hữu tỉ âm, số nào không là số hữu tỉ dương cũng không là số hữu tỉ âm?
\(\frac{5}{{12}};\, - \frac{4}{5};\,2\frac{2}{3};\, - 2;\,\frac{0}{{234}};\, - 0,32.\)
b) Hãy sắp xếp các số trên theo thứ tự từ nhỏ đến lớn.
a) Các số hữu tỉ dương là: \(\frac{5}{{12}};\,2\frac{2}{3}.\)
Các số hữu tỉ âm là: \( - \frac{4}{5}; - 2;\, - 0,32.\)
Số không là số hữu tỉ dương cũng không là số hữu tỉ âm là: \(\frac{0}{{234}}\).
b) Ta có: \( - \frac{4}{5} = -0,8\)
Vì 0 < 0,32 < 0,8 < 2 nên 0 > -0,32 > -0,8 > -2 hay \(-2 < - \frac{4}{5} < -0,32 < 0\)
Mà \(0 < \frac{5}{12} <1; 1<2\frac{2}{3}\) nên \(0 < \frac{5}{12} < 2\frac{2}{3}\)
Các số theo thứ tự từ nhỏ đến lớn là:
\(-2 ; - \frac{4}{5} ; -0,32; \frac{0}{{234}}; \frac{5}{12} ; 2\frac{2}{3}\)
Chú ý: \(\frac{0}{a} = 0\,,\,a \ne 0.\)
1. a) Tìm 3 cách viết số hữu tỉ \(\frac{-4}{15}\) dưới dạng tổng của 2 số hữu tỉ âm .
b) Tìm 3 cách viết số hữu tỉ \(\frac{-4}{15}\) dưới dạng hiệu của 2 số hữu tỉ dương.
2. a) Tìm 3 cách viết số hữu tỉ \(\frac{-7}{12}\) dưới dạng tổng của 2 số hữu tỉ âm
b) Tìm 3 cách viết số hữu tỉ \(\frac{-7}{12}\) dưới dạng hiệu của 2 số hữu tỉ dương.
------Thanks------
1. a, \(\frac{-4}{15}=\left(\frac{-1}{15}+\frac{-3}{15}\right)=\left(\frac{-2}{15}+\frac{-2}{15}\right)=\left(\frac{-0}{15}+\frac{4}{15}\right)\)
b, \(\frac{-4}{15}=\left(\frac{4}{15}-\frac{8}{15}\right)=\left(\frac{3}{15}-\frac{7}{15}\right)=\left(\frac{5}{15}-\frac{9}{15}\right)\)
2 . \(\frac{-7}{12}=\left(\frac{-1}{12}+\frac{-1}{2}\right)=\left(\frac{-1}{6}+\frac{-5}{12}\right)=\left(\frac{-1}{4}+\frac{-1}{3}\right)\)
b, \(\frac{-7}{12}=\left(\frac{4}{12}-\frac{11}{12}\right)=\left(\frac{1}{12}-\frac{8}{12}\right)=\left(\frac{3}{12}-\frac{10}{12}\right)\)
Chứng tỏ rằng giá trị các biểu thức sau là 1 số hữu tỉ A=1,2/1,5 B =3/20:9/25 C =0,3 nhân 12 D =1/2-1/3-1/6
có bao nhiêu số hữu tỉ có mẫu là 28 nằm giữa 2 số hữu tỉ -3/21 và 3/12
rút gọn rồi quy đồng lên mẫu 28, ta được:
-4/28 và 7/28
Kết quả: 10 số hữu tỉ