Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và O A = a , O B = 2 a , O C = 3 a . Thể tích của khối tứ diện OABC bằng
A. V = 2 a 3 3
B. V = a 3 3
C. V = 2 a 3
D. V = a 3
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và \(OA = a,OB = a\sqrt 2 \) và \(OC = 2a\). Tính khoảng cách từ điểm \(O\) đến mặt phẳng \((ABC)\).
Ta có \(OA \bot OB,OA \bot OC \Rightarrow OA \bot \left( {OBC} \right);BC \subset \left( {OBC} \right) \Rightarrow OA \bot BC\)
Trong (OBC) kẻ \(OD \bot BC\)
\(\begin{array}{l} \Rightarrow BC \bot \left( {OAD} \right);BC \subset \left( {ABC} \right) \Rightarrow \left( {OAD} \right) \bot \left( {ABC} \right)\\\left( {OAD} \right) \cap \left( {ABC} \right) = AD\end{array}\)
Trong (OAD) kẻ \(OE \bot AD\)
\( \Rightarrow OE \bot \left( {ABC} \right) \Rightarrow d\left( {O,\left( {ABC} \right)} \right) = OE\)
Xét tam giác OBC vuông tại O có
\(\frac{1}{{O{D^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow OD = \frac{{2a\sqrt 3 }}{3}\)
Xét tam giác OAD vuông tại O có
\(\frac{1}{{O{E^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{D^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}}} = \frac{7}{{4{a^2}}} \Rightarrow OE = \frac{{2a\sqrt 7 }}{7}\)
Vậy \(d\left( {O,\left( {ABC} \right)} \right) = \frac{{2a\sqrt 7 }}{7}\)
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA=a, OB=b, OC=c. Tính thể tích khối tứ diện OABC.
A. abc
B. abc/3
C. abc/2
D. abc/6
Đáp án D
Từ giả thiết ta thấy và OBC là tam giác vuông nên thể tích cần tìm là:
VO.ABC = 1 3 OA.SOBC = 1 6 OA.OB.OC = abc 6
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với
nhau và OA = a, OB = 2a, OC = 3a. Thể tích của khối tứ
diện OABC bằng
A. V = 2 a 3 3
B. V = a 3 3
C. V = 2 a 3
D. V = a 3
Cho tứ diện OABC có O A , O B , O C đôi một vuông góc nhau và O A = a , O B = 2 a , O C = 3 a . Thể tích của khối tứ diện OABC bằng:
A. V = 2 a 3 3 .
B. V = a 3 3 .
C. V = 2 a 3 .
D. V = a 3 .
Đáp án D
Ta có V O A B C = 1 6 . O A . O B . O C = 1 6 . a .2 a .3 a = a 3 .
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc nhau và OA=a, OB=2a, Oc=3a. Thể tích của khối tứ diện OABC bằng:
Tứ diện OABC, có OA = a, OB = b, OC = c và đôi một vuông góc với nhau. Thể tích khối tứ diện OABC bằng
A . a b c 3
B . a b c
C . a b c 6
D . a b c 2
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và O A = a , O B = b , O C = c . Thể tích tứ diện OABC là
A. V = a b c 12
B. V = a b c 4
C. V = a b c 3
D. V = a b c 6
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau, OA = a 2 2 , OB=OC=a. Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC). Tính thể tích khối tứ diện OABH.
A. a 3 2 6
B. a 3 2 12
C. a 3 2 24
D. a 3 2 48
Chọn D
Từ giả thiết suy ra: ΔABC cân tại A có:
Gọi I là trung điểm của BC ⇒ A I ⊥ B C
Giả sử H là trực tâm của tam giác ABC.
Ta thấy O A ⊥ O B C
Vì O B ⊥ O A C ⇒ O B ⊥ A C và A C ⊥ B H nên A C ⊥ O B H ⇒ O H ⊥ A C ( 1 )
B C ⊥ O A I ⇒ O H ⊥ B C ( 2 )
Từ (1) và (2) suy ra O H ⊥ A B C
Có O I = 1 2 B C = a 2 2 = O A
=> ΔAOI vuông cân tại O => H là trung điểm AI và O H = 1 2 A I = a 2
Khi đó:
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau, OA = a 2 2 , OB= OC =a. Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC) Tính thể tích khối tứ diện OABH
A. a 3 2 6
B. a 3 2 12
C. a 3 2 24
D. a 3 2 48