Đáp án D
Ta có V O A B C = 1 6 . O A . O B . O C = 1 6 . a .2 a .3 a = a 3 .
Đáp án D
Ta có V O A B C = 1 6 . O A . O B . O C = 1 6 . a .2 a .3 a = a 3 .
Cho tứ diện OABC có OA=a; OB=2a; OC=3a đôi một vuông góc với nhau tại O. Lấy M là trung điểm của cạnh AC; N nằm trên cạnh CB sao cho CN=2/3 CB. Tính theo a thể tích khối chóp OAMNB
A. 2 a 3
B. a 3 6
C. 2 a 3 3
D. a 3 3
Cho khối tứ diện OABC có OA, OB, OC đôi một vuông góc và OA = a, OB = b, OC = c. Thể tích V của khối tứ diện OABC được tính bởi công thức nào sau đây?
A. V = 1 6 a . b . c
B. V = 1 3 a . b . c
C. V = 1 2 a . b . c
D. V = 3 a . b . c
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2y-z+3=0 và điểm A(2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy,Oz lần lượt tại các điểm B,C khác O. Thể tích khối tứ diện OABC bằng
A. 8.
B. 16.
C. 8/3
D. 16/3
Cho khối tứ diện OABC có đáy OBC là tam giác vuông tại O,OB=a,AC= a 3 ,(a>0) và đường cao O A = a 3 . Tính thể tích V của khối tứ diện theo a
A. V = a 3 2
B. V = a 3 3
C. V = a 3 6
D. V = a 3 12
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 y - z + 3 = 0 và điểm A(2;0;0). Mặt phẳng ( α ) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4 3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:
A. 8.
B. 16.
C. 8 3
D. 16 3
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết O A = 3 , O B = 4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
B. 41 12
C. 144 41
D. 12 41
Cho tứ diện OABC có các góc tại đỉnh O đều bằng 90 ° và O A = a , O B = b ; O C = c . Gọi G là trọng tâm của tứ diện. Thể tích của khối tứ diện GABC bằng
A. a b c 6
B. a b c 8
C. a b c 4
D. a b c 24
Trong không gian cho ba tia Ox,Oy,Oz đôi một vuông góc và các điểm A,B,C không trùng với O lần lượt thay đổi trên các tia Ox,Oy,Oz và luôn thoả mãn điều kiện: tỉ số giữa diện tích tam giác ABC và thể tích khối tứ diện OABC bằng 3 2 . Khối diện OABC có thể tích nhỏ nhất bằng
A. 6
B. 3 2
C. 4 3
D. 27 3 2
Tứ diện OABC, có OA=a, OB=b, OC=c và đôi một vuông góc với nhau. Thể tích khối tứ diện bằng
A. a b c 3
B. abc
C. a b c 6
D. a b c 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 y − z + 3 = 0 và điểm A 2 ; 0 ; 0 .
Mặt phẳng α đi qua A, vuông góc với P , cách gốc tọa độ O một khoảng bằng 4 3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng
A. 8
B. 16
C. 8 3 .
D. 16 3 .