Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và OA=a, OB = b, OC =c. Tính thể tích khối tứ diện OABC
A. abc
B. a b c 3
C. a b c 6
D. a b c 2
Cho tứ diện OABC có OA,OB,OC đôi một vuông góc và OA =OB =a, OC=2a. Thể tích khối cầu ngoại tiếp tứ diện OABC bằng
A. 8 π a 3 9
B. 2 π a 3
C. 8 π a 3 3
D. 6 π a 3
Thể tích của khối tứ diện OABC có OA=OB= OC =a và OA,OB,OC đôi một tạo với nhau một góc 60 o bằng
A. a 3 6
B. a 3 3
C. 2 a 3 12
D. 2 a 3 4
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết OA=3, OB=4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau, OA = a 2 2 , OB= OC =a. Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC) Tính thể tích khối tứ diện OABH
A. a 3 2 6
B. a 3 2 12
C. a 3 2 24
D. a 3 2 48
Cho khối tứ diện OABC với OA, OB, OC từng đôi một vuông góc và OA = OB =OC =6 Tính bán kính R của mặt cầu ngoại tiếp tứ diện OABC
A. R = 4 2
B. R = 2
C. R = 3
D. R = 3 3
Cho khối tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = 6. Tính bán kính R mặt cầu ngoại tiếp tứ diện OABC.
Tứ diện OABC có OA = 1, OB = 2, OC = 3 và đôi một vuông góc với nhau. Gọi M, N, P lần lượt là trung điểm của AB, BC, CA. Tính thể tích khối tứ diện OMNP
A. 1
B. 1 3
C. 1 4
D. 1 6
Cho tứ diện OABC có OA,OB,OC đôi một tạo với nhau góc và OA = OB= a, OC =2a. Côsin góc giữa đường thẳng OC và mặt phẳng (ABC) bằng
A. 5 3
B. 1 3
C. 2 3
D. 2 2 3