Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jungkook Jeon
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2017 lúc 16:00

Đáp án D.

log a b 3 = log a 1 2 b 1 3 = 2 3 log a b  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 10 2019 lúc 7:05

Anh Mai
Xem chi tiết
Trung
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

Đinh Tuấn Việt
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2017 lúc 5:30

Đáp án là C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2018 lúc 11:37

Ta có:

 

Dấu “=” xảy ra khi và chỉ khi

Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.

Chọn B.

Nguyen hoan
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 16:27

Lời giải:

$a^2-2ab-3b^2\geq 0$

$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$

$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$

$\Leftrightarrow (a+b)(a-3b)\geq 0$

$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)

$\Leftrightarrow a\geq 3b$

Xét hiệu:

$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$

$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$

$\Rightarrow P\geq \frac{37}{3}$

Vậy $P_{\min}=\frac{37}{3}$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2019 lúc 2:49

Đáp án B.

Rhider
Xem chi tiết