Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Con Nhộng Con
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 9 2018 lúc 13:06

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2018 lúc 18:28

Lan Nhi Nguyễn
Xem chi tiết
Nguyễn Bảo Cha
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 20:11

(d')//(d)

=>(d'): 4x-3y+c=0

(C): x^2-4x+4+y^2+6y+9-16=0

=>(x-2)^2+(y+3)^2=16

=>R=4; I(2;-3)

Theo đề, ta có: d(I;(d'))=4

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)

=>|c+17|=4*5=20

=>c=3 hoặc c=-37

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2019 lúc 10:27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2017 lúc 5:03

Lan Nhi Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 2 2022 lúc 16:18

Đường tròn (C) tâm O(0;0) bán kính R=1

Phương trình đường thẳng IO có dạng: \(y=x\)

Do A;B là giao điểm của 2 đường tròn \(\Rightarrow AB\perp IO\)

Gọi H là trung điểm AB \(\Rightarrow H\in OI\) ; \(AH=\dfrac{AB}{2}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow OH=\sqrt{OA^2-AH^2}=\sqrt{1-\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}\)

Do H thuộc OI nên tọa độ có dạng: \(H\left(x;x\right)\Rightarrow OH=\sqrt{x^2+x^2}=\sqrt{2x^2}\)

\(\Rightarrow\sqrt{2x^2}=\dfrac{\sqrt{2}}{2}\Rightarrow x=\pm\dfrac{1}{2}\) \(\Rightarrow\left[{}\begin{matrix}H\left(\dfrac{1}{2};\dfrac{1}{2}\right)\\H\left(-\dfrac{1}{2};-\dfrac{1}{2}\right)\end{matrix}\right.\)

Đường thẳng AB qua H và vuông góc OI nên nhận \(\left(1;1\right)\) là 1 vtpt có dạng:

\(\left[{}\begin{matrix}1\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\\1\left(x+\dfrac{1}{2}\right)+1\left(y+\dfrac{1}{2}\right)=0\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x+y+1=0\end{matrix}\right.\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
20 tháng 5 2017 lúc 8:22

Phương pháp tọa độ trong mặt phẳng