Tính giá trị thực của tham số m để
f x = x 3 - x 2 + 2 x - 2 x - 1 , x ≠ 1 3 x + m , x = 1
hàm số liên tục tại x=1
A. m=0
B. m=6
C. m=4
D. m=2
Tìm các giá trị thực của tham số m để f(x) = -x² -2(m-2)x +m+3 luôn âm với mọi x thuộc R
\(\Delta=\left(-2m+4\right)^2-4\cdot\left(-1\right)\left(m+3\right)\)
=4m^2-16m+16+4(m+3)
=4m^2-16m+16+4m+12
=4m^2-12m+28
Để f(x)<0 với mọi x thì 4m^2-12m+28<0 và -1<0
=>\(m\in\varnothing\)
Cho hàm số f(x) = x4 - 2x2 + m - 1 (với m là tham số thực). Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số g(x) = \(\left|f\left(x\right)\right|\) trên đoạn [0;2] bằng 2020.
\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho
\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)
\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)
Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)
TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)
TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Tất cả giá trị thực của tham số m để hàm số y = f ( x ) + m có 3 điểm cực trị?
A. 1 ≤ m ≤ 3
B. m = -1 hoặc m = 3
C. m ≤ -1 hoặc m ≥ 3
D. m ≤ -3 hoặc m ≥ 1
Cho hàm số y = f(x) có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m + 1 có 3 nghiệm thực phân biệt?
A. –3 ≤ m ≤ 3
B. –2 ≤ m ≤ 4
C. –2 < m < 4
D. –3 < m < 3
Đáp án D
Phương pháp:
Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1
Cách giải:
Số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)
và đường thẳng y = m + 1
Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì –2 < m+1 < 4 ó –3 < m < 3
Cho hàm số f ( x ) = x - m 2 x + 8 với m là tham số thực. Giả sử m0 là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị m0 thuộc khoảng nào trong các khoảng cho dưới đây?
A. (2;5)
B. (1;4)
C. (6;9)
D. (20;25)
Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f ( x ) = 4 x 2 − 4 mx + m 2 − 2 m trên đoạn [-2;0] bằng 3. Tính tổng T các phần tử của S
A. T = - 3 2
B. T = 1 2
C. T = 9 2
D. T = 3 2
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ bên. Tất cả giá trị thực của tham số m để hàm số y = f ( x - 1 ) - m - 1 có 3 điểm cực trị?
A. -1<m<5
B. - 1 ≤ m ≤ 5
C. m ≥ - 1 hoặc m ≤ - 5
D. m>-1 hoặc m<-5
câu 19: Tìm giá trị thực của tham số m khác 0 để hàm số y= mx^2-2mx-3m-2 có giá trị nhỏ nhất bằng -10 trên R
câu 20: Gọi S là tập hợp tất cả giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y=f(x)=4x^2-4mx+m^2-2m trên đoạn [-2;0] bằng 3 . Tính tổng T các phần tử của S
Cho hàm số f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tìm tất cả các giá trị thực của tham số m để hàm số y=f(|x|) có 5 cực trị
A. - 10 < m < 5 4
B. - 2 < m < 5
C. - 2 < m < 5 4
D. 5 4 < m < 2
1/ tìm tham số thực m để tồn tại x thỏa mãn f(x) = m^2x + 3 - ( mx + 4 ) âm. 2/ tìm tất cả các giá trị của m để f (x) = m( x-m ) - ( x - 1 ) không âm với mọi x thuộc ( - vô cực , m+1)