Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Lan
Xem chi tiết
Lê Văn Nhân
Xem chi tiết
Mai Trang
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 23:30

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\\ \Leftrightarrow\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}b+c=2a\left(1\right)\\c+a=2b\left(2\right)\\a+b=2c\left(3\right)\end{matrix}\right.\\ \Leftrightarrow\left(1\right)-\left(2\right)=b-a=2a-2b\Leftrightarrow a-b=0\Leftrightarrow a=b\\ \left(2\right)-\left(3\right)=c-b=2b-2c\Leftrightarrow b-c=0\Leftrightarrow b=c\\ \left(3\right)-\left(1\right)=a-c=2c-2a\Leftrightarrow a-c=0\Leftrightarrow a=c\)

Vậy \(a=b=c\)

Bùi Quốc An
Xem chi tiết
T.Thùy Ninh
5 tháng 7 2017 lúc 9:41

Áp dụng BĐT Am-Gm ta được:

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab^2c}{ca}}=2b^2\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2c^2\)

\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{a^2bc}{bc}}=2a^2\)

\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a^2+b^2+c^2=1\)

Vậy giá trị nhỏ nhất của \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}=1\)

Freya
Xem chi tiết
KAITO KID 2005
26 tháng 10 2017 lúc 20:38

thay \(a^2=b.c\)vào biểu thức, ta có:

\(\frac{b.c+c^2}{b^2+b.c}=\frac{c.\left(c+b\right)}{b.\left(b+c\right)}=\frac{c}{b}\)

linhcute
Xem chi tiết
Mới vô
10 tháng 1 2018 lúc 12:23

a)

\(c=\dfrac{a\cdot b\cdot c}{a\cdot b}=\dfrac{35}{-35}=-1\\ a=\dfrac{a\cdot b\cdot c}{b\cdot c}=\dfrac{35}{7}=5\\ b=\dfrac{b\cdot c}{c}=\dfrac{7}{-1}=-7\)

Vậy ...

b)

\(d=\dfrac{a\cdot b\cdot c\cdot d}{a\cdot b\cdot c}=\dfrac{120}{-30}=-4\\ c=\dfrac{a\cdot b\cdot c}{a\cdot b}=\dfrac{-30}{-6}=5\\ a=\dfrac{a\cdot b\cdot c}{b\cdot c}=\dfrac{-30}{-15}=2\\ b=\dfrac{a\cdot b}{a}=\dfrac{-6}{2}=-3\)

Vậy ...

c)

\(a+b+b+c+c+a=-1+1+6\\ 2a+2b+2c=6\\ 2\left(a+b+c\right)=6\\ a+b+c=3\\ a=\left(a+b+c\right)-\left(b+c\right)=3-1=2\\ b=\left(a+b+c\right)-\left(a+c\right)=3-6=-3\\ c=\left(a+b+c\right)-\left(a+b\right)=3-\left(-1\right)=4\)

Vậy ...

Võ Nguyễn Bảo Huy
Xem chi tiết
Phan Thanh Tịnh
10 tháng 9 2016 lúc 17:17

\(\frac{b}{a+b}=\frac{c}{b+c}=\frac{a}{a+c}\Rightarrow\frac{a+b}{b}=\frac{b+c}{c}=\frac{a+c}{a}\)

\(\Leftrightarrow\frac{a}{b}+1=\frac{b}{c}+1=\frac{c}{a}+1\)\(a,b,c>0\Rightarrow a+b+c\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

chi đỗ
Xem chi tiết
vũ thư vy
30 tháng 9 2017 lúc 20:36

a2 = b.c \(\Rightarrow\)\(\frac{a}{b}\)\(\frac{c}{a}\)

Đặt \(\frac{a}{b}\)\(\frac{c}{a}\) = k ( k \(\in\)Z) 

\(\Rightarrow\)a = b.k

          c = a.k

Ta có:

\(\frac{a+b}{a-b}\)\(\frac{b.k+b}{b.k-b}\)\(\frac{b.\left(k+1\right)}{b.\left(k-1\right)}\)\(\frac{k+1}{k-1}\)(1)

\(\frac{c+a}{c-a}\)\(\frac{a.k+a}{a.k-a}\)\(\frac{a.\left(k+1\right)}{a.\left(k-1\right)}\)\(\frac{k+1}{k-1}\)(2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}\)\(\frac{c+a}{c-a}\)

Nguyễn Phương Thùy
Xem chi tiết