\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\\ \Leftrightarrow\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}b+c=2a\left(1\right)\\c+a=2b\left(2\right)\\a+b=2c\left(3\right)\end{matrix}\right.\\ \Leftrightarrow\left(1\right)-\left(2\right)=b-a=2a-2b\Leftrightarrow a-b=0\Leftrightarrow a=b\\ \left(2\right)-\left(3\right)=c-b=2b-2c\Leftrightarrow b-c=0\Leftrightarrow b=c\\ \left(3\right)-\left(1\right)=a-c=2c-2a\Leftrightarrow a-c=0\Leftrightarrow a=c\)
Vậy \(a=b=c\)
Đúng 3
Bình luận (1)