Cho cấp số cộng u n có tất cả các số hạng đều dương và thỏa mãn điều kiện sau
u 1 + u 2 + . . . + u 2018 = 4 u 1 + u 2 + . . . + u 1009
Giá trị nhỏ nhất của biểu thức P = log 3 2 u 2 + log 3 2 u 5 + log 3 2 u 14 bằng
A. 3
B. 1
C. 2
D. 4
Cho cấp số cộng ( u n ) có tất cả các số hạng đều dương thoả mãn u 1 + u 2 + . . . + u 2018 = 4 ( u 1 + u 2 + . . . + u 1009 ) . Giá trị nhỏ nhất của biểu thức P= log 3 2 u 2 + log 3 2 u 5 + log 3 2 u 14 bằng
A. 2.
B. 1.
C. 3.
D. 4.
cho số nguyên dương N (10<=N<=10^6). hãy đếm số lượng các số nguyên dương a nhỏ hơn N (10<=a<=N) thỏa mãn điều kiện: a có ít nhất 2 chữ số, đồng thời a có tất cả các chữ số giống nhau và chia hết cho 9.
viết chương trình đếm các số a thỏa mãn
Cho cấp số nhân ( u n ) có tất cả các số hạng đều dương thoả mãn u 1 + u 2 + u 3 + u 4 = 5 ( u 1 + u 2 ) . Số tự nhiên n nhỏ nhất để u n > 8 100 u 1 là
A. 102.
B. 301.
C. 302.
D. 101.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
b1:Xét cặp số nguyên dương (a,b) thỏa mãn điều kiện abba=72.Hỏi a+b nhận giá trị lớn nhất là bao nhiêu
b2:Hỏi có bao nhiêu cặp số nguyên dương (x,y)sao cho 1/x+1/y=1/2020
b3:tìm số nguyên dương N nhỏ nhất ,chia hết cho 99 và tất cả các chữ số của N đều chẵn
Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅
cho cấp số cộng (u\(_n\)) có công sai d khác 0 và cấp số nhân (v\(_n\)) có công bội q là số dương thỏa mãn \(u_1=v_1=-2\); \(u_2=v_2\); \(u_3=v_3+8\). tính tổng d+q
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)
1. Cho 3 số lập thành cấp số cộng. Biết tổng 3 số bằng 6 và tổng bình phương 3 số bằng 30. Tìm các số.
2. Tìm m để phương trình sau có 4 nghiệm lập thành cấp số cộng:
\(x^4-10x^2+9m=0\)
3. Cho cấp số cộng giảm thỏa mãn:
\(\left\{{}\begin{matrix}u_1+u_2+u_3=3\\u_3^2-u_2^2=3\end{matrix}\right.\)
Tính: \(S=\dfrac{1}{u_1u_2}+\dfrac{1}{u_2u_3}+...+\dfrac{1}{u_{19}u_{20}}\)
4. Cho cấp số cộng tăng:
\(\left\{{}\begin{matrix}u_1+u_3+u_5=-3\\u_2+u_4+u_6=3\end{matrix}\right.\)
Tính: \(S=u_1+u_4+u_7+...+u_{88}\)
Mọi người giúp mình với ạ!!! Mình cảm ơn mọi người nhiều!!!
Câu 1: Gọi 3 số là a;b;c
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=6\\2b=a+c\\a^2+b^2+c^2=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a+c=4\\a^2+c^2=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}b=2\\c=4-a\\a^2+\left(4-a\right)^2=26\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\c=5\\a=-1\end{matrix}\right.\left(\text{V\text{ì} }a< c\right)\)
Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)
\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)
Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt
\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)
(2) có 2 nghiệm \(t_1< t_2\)
=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)
Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)
\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)
Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt
\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)
(2) có 2 nghiệm \(t_1< t_2\)
=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)
tìm tất cả các số tự nhiên n lớn hơn hoặc bằng 3 sao cho có thể đièn các số hữu tỉ vào các ô của bảng ô vuông n*n ô thỏa mãn đồng thời 2 điều kiện sau
điều kiện 1 : tổng các số trong 1 hình vuông 2*2 bất kì là 1 số dương
điều kiện 2 : tổng các số trong 1 hình vuông 3*3 bất kì là 1 số âm
tính xem có bao nhiêu ô vuông
Có tất cả bao nhiêu bộ số nguyên dương (k,n) biết n<20 và các số C n k - 1 ; C n k ; C n k + 1 theo thứ tự đó là số hạng thứ nhất, thứ ba, thứ năm của một cấp số cộng.
A. 4
B. 2
C. 1
D. 0