Đồ thị hàm số y = - x 3 + 3 m x 2 - 3 m - 1 có cực đại và cực tiểu đối xứng nhau qua đường thẳng d : x + 8 y - 74 = 0 khi m bằng.
A.1
B.-2
C.-1
D.2
Cho hàm số y = (m-2)x + m + 3
1. Tìm điều kiện của m để hàm số luôn nghịch biến
2. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3
3. Tìm m để đồ thị hàm số trên và các đồ thị hàm số y= -x+2; y = 2x-1 đồng quy
1. hàm số nghịch biến khi
\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\)
2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)
\(\Rightarrow y=0\)
Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)
3. pt hoành độ giao điểm của
\(y=-x+2,và,y=2x-1\) là
\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)
A(1,1)
3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)
Cho hàm số bậc nhất y=(m-2)x+3 (d) (m khác 1)
a) Vẽ đồ thị hàm số khi m=3
b) Tìm m để (d) song song vs đồ thị hàm số y= -5x+1
c) Tìm m để (d) cắt đồ thị hàm số y=x+3 tại 1 điểm nằm bên trái trục
Cho hàm số y = (m-1)x+3 (1) a) vẽ đồ thị hàm số trên với m -1. b) tìm m để đồ thị hàm số (1) song song với đồ thị hàm số y = -x + 2
b: Để hai đường thẳng song song thì m-1=-1
hay m=0
Bài 1: Cho hàm số y= (m -3).x+m+2
a) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ = -3
b) Tìm m để đồ thị hàm số song song với đường thẳng y= -2x+1
c) Tìm m để đồ thị hàm số vuông góc với đường thẳng y= -2x-3
Bài 2: Đồ thị hàm số y= ax+b (a ≠ 0) và đường thẳng y = a'x+ b' ( b ≠ 0). Khi a.a'= -1
(mink đag cần gấp)
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) có đường tiệm cận đứng đi qua điểm M (3;-1)
b) đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
c) biết đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\) có tiệm cận đứng là x = 2 và tiệm cận ngang y = 3. Tính 2a+3b
d) đồ thị hàm số \(y=\dfrac{x+2}{x^2+2x+m^2-3m}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)
=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)
Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)
=>-1,5m=3
=>m=-2
b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)
=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2
=>m=2
c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)
=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)
=>2/b=2
=>b=1
=>\(y=\dfrac{ax+1}{x-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)
=>a=3
Bài 1 :Cho hàm số y=(m-1)x+m+3
1, Tìm giá trị của m để đồ thị hàm số song song với đồ thị hàm số y=-2x+1
2, Tìm giá trị của m để đồ thị hàm số đi qua điểm (1;-4)
3, Tìm điểm cố định mà đồ thị của hàm số luôn đi qua\
Bài 2 : Cho hàm số y=(2m-1)x+m-3
1, Tìm m để đồ thị hàm số đi qua điểm (2;5)
2, Cmr đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m. Tìm điểm cố định ấy
3, Tìm m để đồ thị hàm số cắt trục hoành tai điểm có hoành độ \(x=\sqrt{2}-1\)
Cho đồ thị hàm số: y = (2m - 1)x + m - 2 (1). Tìm m để:
a) Đồ thị hàm số (1) cắt đường thẳng 2x - y = 3 tại một điểm trên trục hoành.
b) Tìm m đề đồ thị hàm số (1) cắt đườg thẳng y = x + 3 tại 1 điểm trên trục hoành.
a: Thay x=3/2 và y=0 vào (1), ta được:
\(3m-\dfrac{3}{2}+m-2=0\)
=>4m=7/2
hay m=7/8
Cho hàm số y=(m+1)x-2 có đồ thị là đường thẳng d. Tìm m để đồ thị hàm số d cắt đồ thị hàm số y=x+3 tại điểm có tung độ là 2.
a) Để hàm số đồng biến
m-2 >0 => m > 2
b) Đồ thị hàm số đi qua M(1;-3)
=> (m-2).1 - 2 = -3
=> m - 2 = -1 => m = 1
c) Khi m = 3 hàm số trở thành y = x - 2
Cho x = 0 => y = -2 => A(0;-2) \(\in\) d
Cho y = 0 => x = 2 => B(2;0) \(\in\) d
Câu 3: (2.5 điểm). Cho hàm số y=(3-m)x+m-1 có đồ thị (d).
1) Tim m để hàm số trên là hàm số bậc nhất.
2) Vẽ đổ thị của hàm số tại m =5
3) Xác định m để (d) song song với đồ thị hàm số y= 2x +3.