Cho cấp số cộng u n thỏa mãn u 1 − u 3 = 6 u 5 = − 10 , tìm số hạng tổng quát của cấp số cộng đó?
A. u n = 5 − 3 n
B. u n = 5 n
C. u n = 2 − 3 n
D. u n = 5 + 3 n
1. Cho 3 số lập thành cấp số cộng. Biết tổng 3 số bằng 6 và tổng bình phương 3 số bằng 30. Tìm các số.
2. Tìm m để phương trình sau có 4 nghiệm lập thành cấp số cộng:
\(x^4-10x^2+9m=0\)
3. Cho cấp số cộng giảm thỏa mãn:
\(\left\{{}\begin{matrix}u_1+u_2+u_3=3\\u_3^2-u_2^2=3\end{matrix}\right.\)
Tính: \(S=\dfrac{1}{u_1u_2}+\dfrac{1}{u_2u_3}+...+\dfrac{1}{u_{19}u_{20}}\)
4. Cho cấp số cộng tăng:
\(\left\{{}\begin{matrix}u_1+u_3+u_5=-3\\u_2+u_4+u_6=3\end{matrix}\right.\)
Tính: \(S=u_1+u_4+u_7+...+u_{88}\)
Mọi người giúp mình với ạ!!! Mình cảm ơn mọi người nhiều!!!
Câu 1: Gọi 3 số là a;b;c
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=6\\2b=a+c\\a^2+b^2+c^2=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a+c=4\\a^2+c^2=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}b=2\\c=4-a\\a^2+\left(4-a\right)^2=26\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\c=5\\a=-1\end{matrix}\right.\left(\text{V\text{ì} }a< c\right)\)
Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)
\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)
Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt
\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)
(2) có 2 nghiệm \(t_1< t_2\)
=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)
Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)
\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)
Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt
\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)
(2) có 2 nghiệm \(t_1< t_2\)
=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)
cho cấp số cộng (u\(_n\)) có công sai d khác 0 và cấp số nhân (v\(_n\)) có công bội q là số dương thỏa mãn \(u_1=v_1=-2\); \(u_2=v_2\); \(u_3=v_3+8\). tính tổng d+q
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)
cho cấp số cộng un thỏa mãn 3;7;11;15;19;...
tìm u10 và s20 của cấp số cộng đó
Cấp số cộng có \(u_1=3\) ; \(d=4\)
\(\Rightarrow u_{10}=3+9.4=39\)
\(S_{20}=3.20+\dfrac{19.20}{2}.4=820\)
CSC có u1 = 3, d = 4
u10 = u1 + 9d = 3 + 9.4 = 39
S20=\(\dfrac{20}{2}\).(2.3 + 19.4) = 820
Cho cấp số cộng a n , cấp số nhân b n thỏa mãn a 2 > a 1 ≥ 0 , b 2 > b 1 ≥ 1 và hàm số và f ( x ) = x 3 - 3 x sao cho f a 2 + 2 = f a 1 và f log 2 b 2 +2= f ( log 2 b 1 ) . Tìm số nguyên dương n(n>1) nhỏ nhất sao cho b n > 2018 a n .
A. 20
B. 10
C. 14
D. 16
Cho cấp số cộng ( a n ), cấp số nhân ( b n ) thỏa mãn a 2 > a 1 ≥ 0 , b 2 > b 1 ≥ 1 và hàm số f x = x 3 - 3 x sao cho f a 2 + 2 = f a 1 và f log 2 b 2 + 2 = f log 2 b 1 . Tìm số nguyên dương n nhỏ nhất sao cho b n > 2019 a n
A. 17.
B. 14
C. 15.
D. 16
Cho cấp số cộng (an), cấp số nhân (bn) thỏa mãn a2>a1≥0, b2>b1≥1 và hàm số f(x) = x3 – 3x sao cho f(a2) + 2 = f(a1) và f(log2b2) + 2 = f(log2b1). Tìm số nguyên dương n (n>1) nhỏ nhất sao cho bn > 2018an
A. 20
B. 10
C. 14
D. 16
Cho cấp số cộng ( u n ) thỏa mãn u 2 + u 8 + u 9 + u 15 = 100. Tính tổng 16 số hạng đầu tiên của cấp số cộng đã cho.
A. 100
B. 200
C.300
D. 400
Ta có: u 2 + u 8 + u 9 + u 15 = 100
⇔ u 1 + d + u 1 + 7 d + u 1 + 8 d + u 1 + 14 d = 100 ⇔ 4 u 1 + 30 d = 100 ⇔ 2 u 1 + 15 d = 50.
Khi đó S 16 = 16 2 2 u 1 + 15 d = 8.50 = 400
Chọn đáp án D.
Cho cấp số cộng ( u n ) thỏa mãn u 2 + u 23 = 60 . Tính tổng S 24 của 24 số hạng đầu tiên của cấp số cộng đã cho.
A. 60
B. 120
C. 720
D. 1440
Ta có: u 2 + u 23 = 60 ⇔ u 1 + d + u 1 + 22 d = 60 ⇔ 2 u 1 + 23 d = 60.
Khi đó S 24 = n 2 . 2 u 1 + ( n − 1 ) d = 24 2 2 u 1 + 23 d = 12.60 = 720.
Chọn đáp án C
Cho cấp số cộng u n thỏa mãn u 1 + u 4 = 8 u 3 - u 2 = 2 . Tính tổng 10 số hạng đầu của cấp số cộng trên
A. 100.
B. 110.
C. 10.
D. 90.