Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 12 2019 lúc 13:50

Đáp án C

Bỏ 4 lá thư vào 4 phong bì ta có số cách bỏ là.

 4! Cách.

Ta xét các trường hợp sau. 

TH1: chỉ có một lá thư bỏ đúng. giải sử ta chọn 1 trong 4 lá để bỏ đúng (có 4 cách), trong mỗi cách đó chọn một lá để bỏ sai (có 2 cách), khi đó 2 lá còn lại nhất thiết là sai (1 cách), vậy trong TH1 này có 4.2.1=8 cách.

TH2: có đúng 2 lá bỏ đúng. Tương tự trên, ta chọn 2 lá bỏ đúng (có 6 cách), 2 lá còn lại nhất thiết sai (1 cách), vậy trong TH2 này có 6 cách.

TH3: dễ thấy khi 3 lá đã bỏ đúng thì đương nhiên là cả 4 lá đều đúng, vậy có 1 cách.

Suy ra có 8+6+1=15 cách bỏ ít nhất có 1 lá thư vào đúng địa chỉ.

Vậy xác suất cần tìm là: 15/24=5/8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 6 2018 lúc 9:13

Đáp án C

Bỏ 4 lá thư vào 4 phong bì ta có số cách bỏ là. 4! Cách.

Ta xét các trường hợp sau

TH1: chỉ có một lá thư bỏ đúng. giải sử ta chọn 1 trong 4 lá để bỏ đúng (có 4 cách)

trong mỗi cách đó chọn một lá để bỏ sai (có 2 cách), khi đó 2 lá còn lại nhất thiết là sai (1 cách)

vậy trong TH1 này có 4.2.1 = 8 cách.

TH2: có đúng 2 lá bỏ đúng. Tương tự trên, ta chọn 2 lá bỏ đúng (có C 4 2 = 6  cách)

2 lá còn lại nhất thiết sai (1 cách), vậy trong TH2 này có 6 cách.

TH3: dễ thấy khi 3 lá đã bỏ đúng thì đương nhiên là cả 4 lá đều đúng, vậy có 1 cách.

Suy ra có 8+6+1=15 cách bỏ ít nhất có 1 lá thư vào đúng địa chỉ.

Vậy xác suất cần tìm là: 15 24 = 5 8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2019 lúc 16:38

Đáp án A

Phương pháp giải: Áp dụng nguyên lý bù trừ trong bài toán xác suất

Lời giải:

Ta tính xác suất để xảy ra không một lá thư nào đúng địa chỉ.

Mỗi phong bì có 4 cách bỏ thư vào nên có tất cả 4! cách bỏ thư.

Gọi U là tập hợp các cách bỏ thư và Am là tính chất lá thư thứ m bỏ đúng địa chỉ.

Khi đó, theo công thức về nguyên lý bù trừ, ta có  N ¯ = 4 ! - N 1 + N 2 - . . . + ( - 1 ) 4 N 4 .

Trong đó Nm ( 1 ≤ m ≤ 4 ) là số tất cả các cách bỏ thư sao cho có m lá thư đúng địa chỉ.

Nhận xét rằng, Nm là tổng theo mọi cách lấy m lá thư từ 4 lá, với mỗi cách lấy m lá thư, có (4 - m)! cách bỏ m lá thư này đúng địa chỉ, ta nhận được:

Suy ra xác suất cần tìm cho việc không lá thư nào đúng địa chỉ là

Vậy xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là  P = 1 - P ¯ = 5 8 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2018 lúc 8:46

Đáp án A

Phương pháp giải: Áp dụng nguyên lý bù trừ trong bài toán xác suất

Lời giải:

Ta tính xác suất để xảy ra không một lá thư nào đúng địa chỉ.

Mỗi phong bì có 4 cách bỏ thư vào nên có tất cả 4! cách bỏ thư.

Gọi U là tập hợp các cách bò thư và A m  là tính chất lá thư thứ m bỏ đúng địa chỉ.

Khi đó, theo công thức về nguyên lý bù trừ, ta có N ¯ = 4 ! − N 1 + N 2 − ... + − 1 4 N 4  

Trong đó N m 1 ≤ m ≤ 4  là số tất cả các cách bỏ thư sao cho có m lá thư đúng địa chỉ.

Nhận xét rằng, N m  là tổng theo mọi cách lấy m lá thư từ 4 lá, với mỗi cách lấy m lá thư, có 4 − m !  cách bỏ m lá thư này đúng địa chỉ, ta nhận được: N m = C 4 m . 4 − m ! = 4 ! k !  và 

N ¯ = 4 ! 1 − 1 1 ! + 1 2 ! − ... + − 1 n . 1 4 !

Suy ra xác suất cần tìm cho việc không lá thư nào đúng địa chỉ là  P ¯ = 1 − 1 1 ! + 1 2 ! − ... + − 1 4 . 1 4 !

Vậy xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là  P = 1 − P ¯ = 5 8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 5 2018 lúc 14:20

Số cách bỏ 4 lá thư vào 4 bì thư là: 

Kí hiệu 4 lá thư là: L1,L2,L3,L4 và bộ (L1L2L3L4) là một hóan vị của các số 1;2;3;4 trong đó nếu lá thư Li  bỏ đúng địa chỉ.

 Ta xét các khả năng sau 

 có 4 lá thư bỏ đúng địa chỉ:(1;2;3;4) nên có 1 cách bỏ

 có 2 là thư bỏ đúng địa chỉ:

 +) số cách bỏ 2 lá thư đúng địa chỉ là: 

 +) khi đó có 1 cách bỏ hai là thư còn lại

Nên trường hợp này có:  cách bỏ.

 Có đúng 1 lá thư bỏ đúng địa chỉ:

Số cách chọn lá thư bỏ đúng địa chỉ: 4 cách

Số cách chọn bỏ ba lá thư còn lại:  cách

Nên trường hợp này có:  cách bỏ.

Do đó: 

Vậy .

Chọn A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2017 lúc 13:12

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2019 lúc 17:21

Đáp án D

Số phần tử không gian mẫu là:  n ( Ω ) = 3 ! = 6 .

Gọi A là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.

Ta xét các trường hợp sau:

Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.  

Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.

Cả ba lá thư đều được bỏ đúng có duy nhất 1 cách.

⇒ n A = 4

Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là:

  P ( A ) = n ( A ) n Ω = 4 6 = 2 3 .

Cách 2:

Gọi B là biến cố “Không có lá thư nào được bỏ đúng phong bì”.

⇒ n B = 2

P ( A ) = 1 - P ( B ) = 1 - n ( B ) n Ω = 1 - 2 6 = 2 3 .

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 2 2019 lúc 13:28

Xét các dãy số x 1 ; x 2 ; x 3 , trong đó x 1 ; x 2 ; x 3 là một hoán vị của ba số 1,2,3 (ở đây x i = i , tức là lá thư i đã bỏ đúng địa chỉ).

Gọi Ω là tập hợp tất cả các khả năng bỏ 3 lá thư vào 3 phong bì. Khi đó Ω = 3 ! = 6 .

Gọi A là biến cố: “Có ít nhât 1 lá thư bỏ đúng phong bì”. Các khả năng thuận lợi của A là ( 1;2;3 ); ( 1;3;2 ); ( 3;2;1 ); ( 2;1;3 ). Do vậy Ω A = 4 .

Từ đó P ( A ) = Ω A Ω = 4 6 = 2 3

Đáp án cần chọn là A

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 15:10

-         Số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 3! = 6\)

-         Gọi B là biến cố “Không lá thư nào được bỏ đúng phong bì”

A là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”

⇨     n(B) = 2

⇨     \(P(A) = 1 - P(B) = 1 - \frac{2}{6} = \frac{2}{3}\)