Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Một người bỏ ngẫu nhiên 4 lá thư vào 4 bì thư đã được ghi sẵn địa chỉ cần gửi. Tính xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó

A.  5 8

B.  1 8

C.  3 8

D.  7 8

Cao Minh Tâm
29 tháng 3 2018 lúc 8:46

Đáp án A

Phương pháp giải: Áp dụng nguyên lý bù trừ trong bài toán xác suất

Lời giải:

Ta tính xác suất để xảy ra không một lá thư nào đúng địa chỉ.

Mỗi phong bì có 4 cách bỏ thư vào nên có tất cả 4! cách bỏ thư.

Gọi U là tập hợp các cách bò thư và A m  là tính chất lá thư thứ m bỏ đúng địa chỉ.

Khi đó, theo công thức về nguyên lý bù trừ, ta có N ¯ = 4 ! − N 1 + N 2 − ... + − 1 4 N 4  

Trong đó N m 1 ≤ m ≤ 4  là số tất cả các cách bỏ thư sao cho có m lá thư đúng địa chỉ.

Nhận xét rằng, N m  là tổng theo mọi cách lấy m lá thư từ 4 lá, với mỗi cách lấy m lá thư, có 4 − m !  cách bỏ m lá thư này đúng địa chỉ, ta nhận được: N m = C 4 m . 4 − m ! = 4 ! k !  và 

N ¯ = 4 ! 1 − 1 1 ! + 1 2 ! − ... + − 1 n . 1 4 !

Suy ra xác suất cần tìm cho việc không lá thư nào đúng địa chỉ là  P ¯ = 1 − 1 1 ! + 1 2 ! − ... + − 1 4 . 1 4 !

Vậy xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là  P = 1 − P ¯ = 5 8


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Thuỳ Nhung
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết