Hãy đơn giản các biểu thức: t g 2 α . 2 cos 2 α + sin 2 α - 1
Hãy đơn giản các biểu thức: (1 - cos α )(1 + cos α )
(1 - cos α )(1 + cos α ) = 1 – c o s 2 α = ( sin 2 α + c o s 2 α ) – c o s 2 α
= sin 2 α + c o s 2 α – c o s 2 α = sin 2 α
Đơn giản biểu thức A = cos ( π - ∝ ) , ta được :
A. sin α
B. cos α
C. -sin α
D. -cos α
Hãy đơn giản các biểu thức: sin α - sin α . c o s 2 α
sin α - sin α c o s 2 α = sin α (1 – c o s 2 α )
= sin α [( sin 2 α + c o s 2 α ) – c o s 2 α ]
= sin α .( sin 2 α + c o s 2 α – c o s 2 α )
= sin α . sin 2 α = sin 3 α
hãy đơn giản các biểu thức
sin4a+cos4a+2sin2a.cos2a
... \(=\left(sin^2a\right)^2+2\cdot sin^2a\cdot cos^2+\left(cos^2a\right)^2=\left(sin^2a+cos^2a\right)^2=1^2=1\)
\(sin^4a+cos^4a+2sin^2a\cdot cos^2a\)
\(=1-2sin^2a\cdot cos^2a+2sin^2a\cdot cos^2a\)
\(=1\)
Hãy đơn giản các biểu thức sau:
a) \(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)
b) \(\tan^2\alpha\left(2.\cos^2\alpha+\sin^2\alpha-1\right)\)
\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)
\(\tan^2\alpha\left(2.\cos^2\alpha+\sin^2\alpha-1\right)=\tan^2\alpha\left(\cos^2\alpha+\left(\sin^2\alpha+\cos^2\alpha\right)-1\right)\)\(=\tan^2\alpha.\cos^2\alpha=\left(\frac{1}{\cos^2\alpha}-1\right)\cos^2\alpha=1-\cos^2\alpha=\sin^2\alpha\)
Rút gọn biểu thức
\(E = cot(5π+α).cos(α-\dfrac{3π}{2})+cos(α-2π)-2.cos(\dfrac{π}{2}+α)\)\(D = sin(π+α)-cos(\dfrac{π}{2}-α)+cot(4π-α)+tan(\dfrac{5π}{2}-α)\)
Chứng minh giá trị các biểu thức sau không phụ thuộc vào giá trị
của các góc nhọn α.
a) A = cos4α + 2cos2α . sin2α + sin4a
b) B = sin4α + cos2α . sin2α + cos2α
c) C = 2(sin α - cos α )2 - (sin α + cos α )2 + 6sin α . cos α
d) D = (tan α - cot α )2 - (tan α + cot α )2
e) E = 4 cos2 α + (sin α - cos α)2 + (sin α+ cosα)2 + 2(sin2 α -cos2 α)
f) F = \(\dfrac{1}{1+sin\text{α}}\)+\(\dfrac{1}{1-sin\text{α}}\)-2 tan2α
đơn giản biểu thức
\(\dfrac{1-\cos\alpha}{\sin^2\alpha}-\dfrac{1}{1+\cos^2\alpha}\)
Có thể coi biểu thức này không thể đơn giản được nữa (bởi vì biểu thức sau khi biến đổi cũng cồng kềnh không kém gì biểu thức ban đầu)
Chắc bạn ghi đề bài không đúng
1) Đơn giản biểu thức : \(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x\)
2)Đơn giản biểu thức : \(M=\frac{2cos^2x-1}{sinx+cosx}\)
\(P=\frac{1-sin^2x.cos^2x}{cos^2x}-cos^2x=\frac{1}{cos^2x}-sin^2x-cos^2x\)
\(=1+tan^2x-\left(sin^2x+cos^2x\right)=1+tan^2x-1=tan^2x\)
\(M=\frac{2cos^2x-1}{sinx+cosx}=\frac{2cos^2x-\left(sin^2x+cos^2x\right)}{sinx+cosx}=\frac{cos^2x-sin^2x}{sinx+cosx}\)
\(\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}=cosx-sinx\)
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)