Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
super xity
Xem chi tiết
super xity
23 tháng 7 2015 lúc 15:21

bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx

Đào Đức Doanh
25 tháng 3 2016 lúc 21:22

rtyuiuydghfrtghhfrfghhgfghjhg

duc cuong
Xem chi tiết
Xem chi tiết
Lê Trọng Chương
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Nguyễn Ngọc Lộc
25 tháng 7 2020 lúc 21:57

a, Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(\left(x+y\right)^2-2xy-xy\right)\)

\(=1\left(1^2-3\left(-1\right)\right)=1\left(1^2+3\right)=4\)

b, Ta có : \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(\left(x-y\right)^2+3xy\right)\)

\(=1\left(1+3.9\right)=19\)

Stawaron 1
Xem chi tiết
Nguyễn Xuân Anh
16 tháng 4 2019 lúc 21:16

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

Stawaron 1
16 tháng 4 2019 lúc 21:21

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé

ta có \(\left(x-y\right)^2\ge0\)

<=> \(x^2+y^2\ge2xy\)

<=>\(x^2+y^2+2xy\ge4xy\)

<=>\(\left(x+y\right)^2\ge4xy\)

<=>\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

<=>\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Linh Nguyễn
Xem chi tiết
Nguyễn Thị Yến Nhi
26 tháng 11 2016 lúc 21:56

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

Tran Thi Hue
26 tháng 11 2016 lúc 21:20

mk chua hok den nen ko co bit lam

Linh Nguyễn
26 tháng 11 2016 lúc 21:23

cảm ơn b nhé

Linh Nguyễn
Xem chi tiết
Mon SLVO
2 tháng 1 2017 lúc 18:31

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

ʚĭɞ Thị Quyên ʚĭɞ
Xem chi tiết
Nghiêm Thị Hồng Nhung
4 tháng 5 2018 lúc 21:55

có : (x-y)2 \(\ge0,\forall x,y\)

==>x2-2xy+y2 \(\ge\)0 \(\forall x,y\)

==> 2.(x2+y2)\(\ge\)2xy +x2+y2 \(\forall x,y\)

==> x2+y2 \(\ge\)\(\dfrac{\left(x+y\right)^2}{2}=\dfrac{2^2}{2}=2\) ( do x+y=2) \(\forall x,y\)

lại có (x2-y2)2\(\ge\)0\(\forall x,y\)

==> x4+y4-2x2y2 \(\ge\)0 \(\forall x,y\)

==> 2.(x4+y4) \(\ge\)2x2y2 + x4+y4 \(\forall x,y\)

==> x4+y4 \(\ge\)\(\dfrac{\left(x^2+y^2\right)^2}{2}\ge\dfrac{2^2}{2}=2\)

==> đpcm

dấu ''=,, xảy ra <=> \(\left\{{}\begin{matrix}x+y=2\\x-y=0\\x^2-y^2=0\end{matrix}\right.< =>x=y=1}\)

Nghiêm Thị Hồng Nhung
4 tháng 5 2018 lúc 21:55

dấu ''=,, xảy ra <=> x=y=1

hội đồng bảo an liên hợp...
Xem chi tiết