Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sonyeondan Bangtan
Xem chi tiết
Nguyễn Xuân Tài
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 23:43

a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)

Số hạng ko chứa x tương ứng với 10-2k=0

=>k=5

=>SH đó là 8064

b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)

Số hạng ko chứa x tương ứng với 6-3k=0

=>k=2

=>Số hạng đó là 60

c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)

\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)

SH chứa x^10 tương ứng với 15-5k=10

=>k=1

=>Hệ số là -810

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2017 lúc 4:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 10 2019 lúc 3:45

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 4 2017 lúc 4:18

Dream Anna
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 12 2021 lúc 13:47

\(\left(x^2-x^3+1\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^2-x^3\right)^k=\sum\limits^{10}_{k=0}C_{10}^k\sum\limits^k_{i=0}C_k^i.\left(x^2\right)^i.\left(-x^3\right)^{k-i}\)

\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^k.C_k^i.\left(-1\right)^{k-i}.x^{3k-i}\)

Số hạng chứa \(x^{10}\) thỏa mãn:

\(\left\{{}\begin{matrix}0\le k\le0\\0\le i\le k\\3k-i=10\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(2;4\right);\left(5;5\right)\)

\(\Rightarrow\) Hệ số: \(C_{10}^4.C_4^2+C_{10}^5.C_5^5=...\)

Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 23:01

SHTQ là: \(C^k_5\cdot\left(x^3\right)^{5-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_5\cdot x^{15-4k}\)

Số hạng chứa x^3 tương ứng với 15-4k=3

=>4k=12

=>k=3

=>Hệ số là \(C^3_5=10\)

Technology I
9 tháng 1 lúc 21:54

Để tìm hệ số của số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 , ta sử dụng công thức tổng hạng:

Tổng hạng = ∑ C(n, k)

Trong đó:

C(n, k) là số cấu hình có k phần tử trong tổng hạng nn là số lượng phần tử trong tổng hạngk là số lượng phần tử không chứa x

Vì ta chỉ quan tâm đến số hạng chứa x3, nên không quan tâm đến số lượng phần tử trong tổng hạng n.

Số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 (với x ≠ 0) là 2.

Hệ số của số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 (với x ≠ 0) là 2/3.

Hàn Nhật Hạ
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 6:44

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

Khách vãng lai đã xóa
Quách Minh Hương
Xem chi tiết