Áp dụng qui tắc đổi dấu để các phân thức có cùng mẫu thức rồi làm tính cộng phân thức:
Qui đồng mẫu thức các phân thức sau (có thể áp dụng qui tắc đổi dấu với các phân thức để tìm mẫu thức chung thuận tiện hơn):
a) + Phân tích mẫu thức thành nhân tử để tìm nhân tử chung:
x3 – 1 = (x – 1)(x2 + x + 1)
x2 + x + 1 = x2 + x + 1
⇒ MTC = (x – 1)(x2 + x + 1) = x3 – 1
+ Nhân tử phụ : (Có thể bỏ qua bước này nếu đã quen)
(x3 – 1) : (x3 – 1) = 1
(x3 – 1) :( x2 + x + 1) = x - 1
(x3 – 1) : 1 = x3 – 1
+ Quy đồng :
b) Ta có:
+ Phân tích mẫu thức thành nhân tử để tìm MTC
x + 2 = x + 2
2x – 4 = 2.(x – 2)
3x – 6 = 3.(x – 2)
⇒ MTC = 6.(x + 2)(x – 2)
+ Nhân tử phụ: (Có thể bỏ qua bước này nếu đã quen)
6(x + 2)(x – 2) : (x + 2) = 6(x – 2)
6(x + 2)(x – 2) : 2(x – 2) = 3(x + 2)
6(x + 2)(x – 2) : 3(x – 2) = 2(x + 2)
+ Quy đồng:
Phát biểu các qui tắc: Cộng hai phân thức cùng mẫu thức, cộng hai phân thức khác mẫu thức. Làm tính cộng:
- Qui tắc cộng hai phân thức cùng mẫu:
Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.
- Qui tắc cộng hai phân thức khác mẫu:
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
- Làm tính cộng:
Áp dụng quy tắc đổi dấu để các phân thức có cùng mẫu thức rồi làm tính cộng phân thức :
a) \(\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b) \(\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)
Áp dụng qui tắc đổi dấu rồi rút gọn phân thức:
Áp dụng qui tắc đổi dấu rồi rút gọn phân thức:
Áp dụng quy tắc đổi dấu để các phân thức có cùng mẫu thức rồi thực hiện phép cộng phân thức:
a) \(\frac{16+x}{x^2-2x}+\frac{18}{2x-x^2}\)
b)\(\frac{2y}{2x^2-xy}+\frac{4x}{xy-2x^2}\)
c)\(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)
Mong 500 ae giúp ạ ^^
\(=\frac{16+x}{x^2-2x}-\frac{18}{x^2-2x}\)
\(=\frac{16+x-18}{x\left(x-2\right)}\)
\(=\frac{-2+x}{x\left(x-2\right)}\)
a) \(\frac{16+x}{x^2-2x}+\frac{18}{2x-x^2}=\frac{16+x-18}{x^2-2x}=\frac{x-2}{x\left(x-2\right)}=\frac{1}{x}\)
b) \(\frac{2y}{2x^2-xy}+\frac{4x}{xy-2x^2}=\frac{2y-4x}{2x^2-xy}=\frac{-2\left(2x-y\right)}{x\left(2x-y\right)}=\frac{-2}{x}\)
c) \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}=\frac{4-x^2+2x^2-2x+5-4x}{x-3}=\frac{x^2-6x+9}{x-3}=\frac{\left(x-3\right)^2}{x-3}=x-3\)
a)
\(\frac{16+x}{x^2-2x}+\frac{18}{2x-x^2}=\frac{16+x}{x^2-2x}-\frac{18}{x^2-2x}\)
\(=\frac{16+x-18}{x\left(x-2\right)}=\frac{x-2}{x\left(x-2\right)}=\frac{1}{x}\)
b) \(\frac{2y}{2x^2-xy}+\frac{4x}{xy-2x^2}=\frac{2y}{2x^2-xy}-\frac{4x}{2x^2-xy}\)
\(=\frac{2y-4x}{x\left(2x-y\right)}=\frac{2\left(y-2x\right)}{x\left(2x-y\right)}=-\frac{2}{x}\)
c) \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)\(=\frac{4-x^2}{x-3}-\frac{2x-2x^2}{x-3}+\frac{5-4x}{x-3}\)
\(=\frac{4-x^2-2x+2x^2+5-4x}{x-3}\)\(=\frac{x^2-6x+9}{x-3}=\frac{\left(x-3\right)^2}{x-3}=x-3\)
Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến đổi mỗi cặp phân thức sau thành cặp phân thức bằng nó và có cùng mẫu thức: 4 x x + v à 3 x x - 1
Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến đổi mỗi cặp phân thức sau thành cặp phân thức bằng nó và có cùng mẫu thức: 3 x x - 5 v à 7 x + 2 5 - x