Chứng minh rằng trong một đường tròn, đường kính là dây lớn nhất.
Chứng minh rằng trong một đường tròn, đường kính là dây lớn nhất ?
Giả sử ta có đường tròn tâm O đường kính AB, dây CD khác với đường kính
Vì O,C,D không thẳng hàng
nên DC<OC+OD=2R=AB
=>AB là dây lớn nhất
Chứng minh định lí: Trong các dây của một đường tròn, dây lớn nhất là đường kính.
Giả sử ta có đường tròn đường kính AB = 2R và một dây CD.
Trong ΔCOD, theo bất đẳng thức tam giác ta có:
CD ≤ OC + CD
=> CD ≤ 2R
=> CD ≤ AB (đpcm)
Chứng minh định lí : Trong các dây của một đường tròn, dây lớn nhất là đường kính
Giả sử ta có đường tròn đường kính AB = 2R và một dây CD. Trong COD, theo bất đẳng thức tam giác ta có:
CD ≤ OC + CD => CD ≤ 2R => CD ≤ AB
Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA.
Dây AD của đường tròn lớn cắt đường tròn nhỏ ở C. Chứng minh rằng AC = CD.
* Xét tam giác ACO có CO’ là đường trung tuyến và
Suy ra, tam giác ACO vuông tại C
⇒ AC ⊥ CO
* Xét tam giác AOD có AO = OD = R
Suy ra tam giác AOD cân tại O.
Lại có OC là đường cao nên đồng thời là đường trung tuyến
⇒ C là trung điểm AD hay AC = CD. (điều phải chứng minh)
Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA.
a) Hãy xác định vị trí tương đối của hai đường tròn.
b) Dây AD của đường tròn lớn cắt đường tròn nhỏ ở C. Chứng minh rằng AC = CD.
a) Gọi O’ là tâm của đường tròn đường kính OA.
Gọi R và r lần lượt là bán kính đường tròn tâm O và tâm O’.
Suy ra, hai đường tròn đã cho tiếp xúc trong với nhau.
b) +) Xét đường tròn (O’) có A, O, C là ba điểm cùng thuộc đường tròn và OA là đường kính nên tam giác AOC vuông tại C.
⇒ OC ⊥ AD
+) Xét đường tròn tâm (O) có A, D là hai điểm thuộc đường tròn nên OA = OD
⇒ ΔAOD cân tại O mà OC ⊥ AD
⇒ OC là đường trung tuyến của ΔAOD
⇒ C là trung điểm của AD
⇒ AC = CD
cho đường tròn (O), dây MN và một điểm C ở ngoài đường tròn và nằm trên tia NM. từ một điểm chính giữa P của cung lớn MN kẻ đường kính PQ của đường tròn cắt dây MN tại D. tia CP cắt đường tròn (O) tại điểm thứ hai I. các dây MN và QI cắt nhau tại K
a. chứng minh rằng tứ giác PDKI nội tiếp
b. chứng minh CI.CP=CK.CD
c. chứng minh CI là phân giác ngoài ở đỉnh I của tam giác MIN
1) Chứng minh định lý: " Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy."
2) Chứng minh định lý: " Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy."
Cho đường tròn tâm O đường kính BC, A là một điểm thuộc đường tròn. H là hình chiếu của A trên BC. Vẽ đường tròn (I) có đường kính AH, cắt AB và AC theo thứ tự ở M và N.
a) Chứng minh rằng OA vuông góc với MN.
b) Vẽ đường kính AOK của đường tròn (O). Gọi E là trung điểm của HK. Chứng minh rằng E là tâm của đường tròn ngoại tiếp tứ giác BMNC.
c) Cho BC cố định. Xác định vị trí của điểm A để bán kính của đường tròn ngoại tiếp tứ giác BMNC lớn nhất.
Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA
a) Hãy xác định vị trí tương đối của hai đường tròn
b) Dây AD của đường tròn lớn cắt đường tròn nhỏ ở C. Chứng minh rằng AC = CD
Hướng dẫn giải:
a) Gọi O' là tâm của đường tròn đường kính OA thì O'A=O'O.
Ta có OO'=OA-O'A hay d=R-r nên đường tròn (O) và đường tròn (O') tiếp xúc trong.
b) Tam giác CAO có cạnh OA là đường kính của đường tròn ngoại tiếp nên ΔCAO vuông tại C
⇒OC⊥AD
⇒CA=CD (đường kính vuông góc với một dây).