Giải phương trình: \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
giải bất đẳng thức phương trình và biểu diễn tập nghiệm trên trục số :
\(\frac{7x-1}{6}+2x>\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x>6\left(16-x\right)\)
=>35x-5+60x>96-6x
=>95x+6x>96+5
=>101x>101
hay x>1
Vậy: S={x|x>1}
\(\dfrac{7x-1}{6}+2x>\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{5.\left(7x-1\right)}{30}+\dfrac{60x}{30}>\dfrac{6.\left(16-x\right)}{30}\\ \Leftrightarrow35x-5+60x>96-6x\\ \Leftrightarrow35x+60x+6x>96+5\\ \Leftrightarrow101x>101\\ \Leftrightarrow x>1\)
Em tự biểu diễn trục số nha!
Giải hệ phương trình sau \(\hept{\begin{cases}\frac{2x-5y-1}{11}+\frac{x-2y}{3}=16\\\frac{7x+y}{5}+\frac{2\left(x-1\right)}{3}=31\end{cases}}\)
Giải phương trình:
a. \(2+\frac{2x^2-8x}{2x^2+8x}+\frac{2x^2+7x+23}{2x^2+7x-4}=\frac{2x+5}{2x-1}\)
b.\(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
\(2+\frac{2x^2-8x}{2x^2+8x}+\frac{2x^2+7x+23}{2x^2+7x-4}=\frac{2x+5}{2x-1}\)
\(\Leftrightarrow2+\frac{2x\left(x-4\right)}{2x\left(x+4\right)}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}=\frac{2x+5}{2x-1}\)
\(\Leftrightarrow2+\frac{x-4}{x+4}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}-\frac{2x+5}{2x-1}=0\)
\(\Leftrightarrow\frac{2\left(x+4\right)\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{\left(x-4\right)\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}-\frac{\left(2x+5\right)\left(x+4\right)}{\left(2x-1\right)\left(x+4\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+4\right)\left(2x-1\right)+\left(x-4\right)\left(2x-1\right)+2x^2+7x+23-\left(2x+5\right)\left(x+4\right)}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow2\left(x+4\right)\left(2x-1\right)+\left(x-4\right)\left(2x-1\right)+2x^2+7x+23-\left(2x+5\right)\left(x+4\right)=0\)
\(\Leftrightarrow2\left(2x^2+7x-4\right)+\left(2x^2-9x+4\right)+2x^2+7x+23-\left(2x^2+13x+20\right)=0\)
\(\Leftrightarrow4x^2+14x-8+2x^2-9x+4+2x^2+7x+23-2x^2-13x-20=0\)
\(\Leftrightarrow6x^2+7x-1=0\)
\(\Leftrightarrow6\left(x^2+2.\frac{7}{12}.x+\frac{49}{144}\right)-\frac{193}{144}=0\)
\(\Leftrightarrow\left(x+\frac{7}{12}\right)^2=\frac{\frac{193}{144}}{6}=\frac{193}{864}\)
Bạn tự làm nốt.
Có chắc là đề ổn không bạn?
Hoặc là xem bài mình hộ với; ngộ nhỡ mình sai. Chứ kết quả lẻ quá; chẳng đẹp gì :>
giải phương trình sau :
a) 5-(x-6) = 4(3-2x) b) 2x(x+2)2-8x2 = 2(x-2)(x2+4)
c) 7-(2x+4) = -(x+4) d) (x+1)(2x-3) = (2x-1)(x+5
f) \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
e) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
Bài 1: Giải các phương trình sau:
a) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
b) \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
Bài 2: Giải các phương trình sau:
a) \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
b) \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}-6}{5}\)
\(1a,\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{12x^2+12x+3}{15}-\frac{5x^2-10x+5}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(x=-\frac{1}{12}\)
Vậy ................
\(b,\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow\frac{5\left(7x-1\right)}{30}+\frac{30.2x}{30}=\frac{6\left(16-x\right)}{30}\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
Vậy ....................
Bài 1:
c) \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
\(\Leftrightarrow\frac{8.\left(x-2\right)^2}{8.3}-\frac{3.\left(2x-3\right).\left(2x+3\right)}{3.8}+\frac{4.\left(x-4\right)^2}{4.6}=0\)
\(\Leftrightarrow\frac{8.\left(x^2-4x+4\right)}{24}-\frac{3.\left(4x^2-9\right)}{24}+\frac{4.\left(x^2-8x+16\right)}{24}=0\)
\(\Rightarrow8.\left(x^2-4x+4\right)-3.\left(4x^2-9\right)+4.\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow8x^2-32x+32-\left(12x^2-27\right)+4x^2-32x+64=0\)
\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
\(\Leftrightarrow123-64x=0\)
\(\Leftrightarrow64x=123-0\)
\(\Leftrightarrow64x=123\)
\(\Leftrightarrow x=123:64\)
\(\Leftrightarrow x=\frac{123}{64}.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{123}{64}\right\}.\)
Chúc bạn học tốt!
Bài 1:
a) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2-2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
\(\Leftrightarrow36x+3=0\)
\(\Leftrightarrow x=12\)
Vậy phương trình có nghiệm là x = 12
BT: Giải phương trình
a)\(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
b)\(\frac{3x-2}{6}-5=\frac{3-2\left(x+7\right)}{4}\)
giải phương trình
a)\(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
b)\(\frac{3x-2}{6}-5=\frac{3-2\left(x+7\right)}{4}\)
giúp mk đi
còn đây là câu b
\(\frac{3x-2-30}{6}=\frac{3-2x-14}{4}\)
\(\Leftrightarrow\frac{3x-32}{6}-\frac{-11-2x}{4}=0\)
\(\Leftrightarrow\frac{6x-64+33+6x}{12}\)
\(\Leftrightarrow12x=31\)
\(\Leftrightarrow x=\frac{31}{12}\)
\(\frac{10x-10+4-21x+3}{12}=\frac{4x+3-35}{7}\)
\(\Leftrightarrow\frac{-11x-3}{12}=\frac{4x-3}{7}\)
\(\Leftrightarrow\frac{-11x-3}{12}-\frac{4x-3}{7}=0\)
\(\frac{-77x-21-48x+36}{84}=0\)
\(\Leftrightarrow125x=15\)
\(\Leftrightarrow x=\frac{3}{25}\)
Giải phương trình sau:
\(\frac{4}{2x^3+3x^2-8x-12}-\frac{1}{x^2-4}-\frac{4}{2x^2+7x+6}+\frac{1}{2x+3}=0\)
giải phương trình: \(\frac{9}{2x^2+7x-6}\)-\(\frac{1}{2x^2+3x-6}\)=\(\frac{1}{x}\)