Cho a b = c d . Chứng minh: a 2 - b 2 c 2 - d 2 = a b c d
bài 1:
cho C1 =\(70^0\) D2=\(110^0\)
a)chứng minh a//b
b)chứng minh c\(\perp\)b
giúp mk nha mọi người
a) Ta có: \(\widehat{D_1}+\widehat{D_2}=180^0\)(kề bù)
\(\Rightarrow\widehat{D_1}=180^0-110^0=70^0\)
\(\Rightarrow\widehat{D_1}=\widehat{C_1}=70^0\)
Mà 2 góc này đồng vị
=> a//b
b) Ta có: a//b,a⊥c
=> c⊥b(từ vuông góc đến song song)
a, Ta có gD1 + gD2 = 180 độ ( hai góc kề bù)
=> gD1 = 180 - gD2 = 180 -110= 70 độ
Vì gD1 = gC1 = 70 độ
mà hai góc vị trí đồng vj
=> a//b
b, Ta có a//b
mà c ⊥ a
=>c ⊥ b
cho a+d=c+b và a2+d2 = b2+c2 ( b, d khác 0 ). chứng minh a/b=c/d
Cho a/b =c/d chứng minh
a,(a+b/c+d)^2=a^2+b^2/c^2+d^2
b,7a^2+5ac/7a^2-5ac=7b^2+5bd/7b^2-5bd
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a, Ta có: \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
b, thay vào giống a là đc
Cho a/c = b/d
Chứng minh ac/bd = a2+c2/b2+d2
Đặt \(\frac{a}{c}=\frac{b}{d}=k\)
\(\Rightarrow a=ck;b=dk\)
Khi đó : \(\frac{ac}{bd}=\frac{ckc}{dkd}=\frac{c^2}{d^2}\left(1\right)\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(\text{đpcm}\right)\)
Cho tam giác ABC vuông tại C biết góc B= 2 lần góc A.
a) Tính góc A và góc B.
b) Trên tia đối của tia CB lấy điểm D sao cho CD=CB. Chứng minh AD=AB. Trên AD lấy điểm M, trên AB lấy điểm N sao cho AM=AN. Chứng minh CM=CN.
c) Gọi I là giao điểm của AC và MN. Chứng minh IM=IN.
d) Chứng minh MN//BD.
Vẽ hình giúp mk lun nhé! Thanks
a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)
^A + 2^A= 90°
3^A = 90°
^A = 30°
^B= 90° - 30°= 60°
b)Xét ΔACB và ΔACD có
AC là cạnh chung
^ACB= ^ACD (=90°)
CD= CB (gt)
Vậy ΔACB = ΔACD
=> AD= AB
Xét ΔANC và ΔAMC có
AN= AM (gt)
^NAC=^MAC ( ΔACB = ΔACD )
AC là cạnh chung
Vậy ΔANC = ΔAMC
=> CN= CM
c) Xét ΔNCI và ΔMCI có
CN=CM (cmt)
^NCI=^MCI ( ΔANC = ΔAMC)
CI là cạnh chung
Vậy ΔNCI = ΔMCI
=> IN= IM
cho a,b ,c,d thuoc R. chứng minh: a^2+b^2+c^2+d^2+e^2 \(\ge\) a(b+c+d+e)
cho a,b,c,d thỏa mãn a^2=b^2+c^2+d^2 chứng minh a.b.c.d +2015 được viết dưới dạng hiệu 2 số chính phương
Cho tứ giác ABCD. Gọi I là giao điểm của các tia phân giác góc A, góc B. Chứng minh:
a, Góc AIB = ( góc C + góc D ):2
b, Tia phân giác góc C cắt tia phân giác góc A tại E. Giả sử góc B> góc D. Chứng minh góc AEF=(góc B-góc D):2
1. Chứng minh tỉ lệ thức:
Cho \(\frac{a}{b}=\frac{c}{d}\) , chứng minh rằng :
a, \(\frac{a}{3a+b}\) \(=\frac{c}{3c+d}\)
b, \(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)
c, \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
Có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Nên \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
1. a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
c,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{ab}{cd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\) (3)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
@@ Học tốt
Chiyuki Fujito
1) a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)
\(\frac{c}{3a+b}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\left(đpcm\right)\)
Cho a/b = c/d
Chứng minh ac/bd = a2+c2/b2+d2
a/b = c/d = k => a = bk; c = dk.
ac/bd = bkdk/bd = k^2.
a^2 + c^2/b^2 + d^2 = b^2.k^2 + d^2.k^2/ b^2 + d^2
= (b^2 + d^2).k^2/(b^2+d^2) = k^2.
Vậy ac/bd = a^2 + c^2/ b^2 + d^2