Gọi S là tập hợp tất cả các giá trị của m sao cho 10 m ∈ ℤ và phương trình 2 log m x − 5 2 x 2 − 5 x + 4 = log m x − 5 x 2 + 2 x − 6 có nghiệm duy nhất. Tìm số phần tử của S
A. 15
B. 14
C. 13
D. 16
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Gọi S là tập hợp tất cả các giá trị của m sao cho 10 m ∈ ℤ và phương trình 2 log m x - 5 2 x 2 - 5 x + 4 = log m x - 5 x 2 + 2 x - 6 có nghiệm duy nhất. Tìm số phần tử của S.
A. 15.
B. 14.
C. 13.
D. 16.
Đáp án A.
Phương trình đã cho tương đương với
Để phương trình có nghiệm duy nhất
Do 10 m ∈ ℤ nên có 15 giá trị m thỏa mãn yêu cầu bài toán.
Gọi S là tập hợp tất cả các giá trị của tham số m ∈ ℤ và phương trình log m x - 5 x 2 - 6 x + 12 = log m x - 5 x + 2 có nghiệm duy nhất. Tìm số phân tử của S .
A. 2
B. 3
C. 0
D. 1
Chọn A
Phương pháp:
- Tìm điều kiện xác định.
- Giải phương trình tìm nghiệm và tìm điều kiện để phương trình có nghiệm duy nhất.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Gọi S là tập hợp các giá trị thực của tham số m sao cho phương trình ( x + 1 ) 3 + 3 - m = 3 3 x + m 3 có đúng nghiệm thực. Tích tất cả các phần tử của tập hợp S là
A. -1
B. 1
C. 3
D. 5
Gọi S là tập hợp tất cả các giá trị của tham số m ∈ Z và phương trình:
logmx-5.x2 - 6x + 12= log\(\sqrt{mx-5}\) \(\sqrt{x+2}\) có nghiệm duy nhất. Tính số phần tử của S
ĐKXĐ: \(mx-5>0\) ; \(x>-2\)
\(log_{mx-5}\left(x^2-6x+12\right)=log_{mx-5}\left(x+2\right)\)
\(\Rightarrow x^2-6x+12=x+2\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
TH1: \(x=2\) là nghiệm duy nhất \(\Rightarrow\left\{{}\begin{matrix}m.2-5>0\\m.5-5< 0\end{matrix}\right.\) \(\Rightarrow\) ktm
TH2: \(x=5\) là nghiệm duy nhất \(\Rightarrow\left\{{}\begin{matrix}m.2-5< 0\\m.5-5>0\end{matrix}\right.\)
\(\Rightarrow1< m< \dfrac{5}{2}\Rightarrow m=2\)
Cho phương trình log2(10x) - 2mlog10xx - log(10x2)=0 . Gọi S là tập chứa tất cả các giá trị nguyên của m thuộc [-10;10] để phương trình đã cho có đúng 3 nghiệm phân biệt . Số phần tử của tập S là
Gọi S là tập các giá trị của tham số m sao cho phương trình x + 1 3 + 3 - m = 3 3 x + m 3 có đúng hai nghiệm thực. Tính tổng tất cả các phần tử trong tập hợp S
A. 4
B. 2
C. 6
D. 5
gọi S là tập hợp tất cả các giá trị m để phương trình m lnx - x lnm = x-m có 2 nghiệm phân biệt. tìm tập S