Cho hệ
\(mx-y=2\)
\(3x+my=6\)
Khi hệ có nghiệm thoả mãn \(x+y=0\) thì \(x^2+y^2=?\)
Giải chi tiết nha
Cho hệ phương trình {mx-y=2;x+my=1 Tìm m để hpt có nghiệm duy nhất thoả mãn x+y=1 (giải chị tiết giúp mình với ạ)
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)
Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)
\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là x=....y
giải chi tiết nha
Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là x=....y
giải chi tiết nha
Ta có: 2x^2+2y^2=x^2-2xy+y^2
<=>x^2+y^2=-2xy
<=> x^2+2xy+y^2=0
<=>(x+y)^2=0
=>x+y=0
=>x=-y
Cho hệ phương trình
mx-y=2
x +my=3
Tìm tất cả các giá trị của m sao cho hệ phương trình có đúng một nghiệm (x;y) thoả mãn x+y<0
1. Cho hệ phương trình (a+1)x - y = a+1 và x+(a-1)y=2
a) Giải và biện luận hpt
b) Tìm a nguyên để hpt có nghiệm nguyên
c) Tìm a để nghiệm (x,y) của hpt thoả mãn x+y nhỏ nhất
2. Cho hpt : 3x+my=5 và mx-y=2
a) Giải hpt
b) Tìm m để hệ có nghiệm duy nhất (x,y) thoả mãn x+y <0
MÌNH ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN RẤT NHIỀU !
1. Cho hệ phương trình (a+1)x - y = a+1 và x+(a-1)y=2
a) Giải và biện luận hpt
b) Tìm a nguyên để hpt có nghiệm nguyên
c) Tìm a để nghiệm (x,y) của hpt thoả mãn x+y nhỏ nhất
2. Cho hpt : 3x+my=5 và mx-y=2
a) Giải hpt
b) Tìm m để hệ có nghiệm duy nhất (x,y) thoả mãn x+y <0
MÌNH ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN RẤT NHIỀU !
1. Cho hệ phương trình (a+1)x - y = a+1 và x+(a-1)y=2
a) Giải và biện luận hpt
b) Tìm a nguyên để hpt có nghiệm nguyên
c) Tìm a để nghiệm (x,y) của hpt thoả mãn x+y nhỏ nhất
2. Cho hpt : 3x+my=5 và mx-y=2
a) Giải hpt
b) Tìm m để hệ có nghiệm duy nhất (x,y) thoả mãn x+y <0
MÌNH ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN RẤT NHIỀU !
Giải và biện luận hệ phương trình:
Từ (1) y = mx – 2m, thay vào (2) ta được:
4x – m(mx – 2m) = m + 6 (m2 – 4)x = (2m + 3)(m – 2) (3)
+ Nếu m2 – 4 0 hay m 2 thì x =
Khi đó y = - . Hệ có nghiệm duy nhất: ( ;- )
+ Nếu m = 2 thì (3) thỏa mãn với mọi x, khi đó y = mx -2m = 2x – 4
Hệ có vô số nghiệm (x, 2x-4) với mọi x thuộc R
+ Nếu m = -2 thì (3) trở thành 0x = 4 . Hệ vô nghiệm
mọi người giải thích giúp mình phần tô đậm nhé
Cho HPT : x+my=2 và mx-2y=1 . Biết rằng tồn tại các giá trị nguyên của m để hệ có nghiệm duy nhất (x;y) thoả mãn x>0 và y>0 .Số các giá trị nguyên đó là gif ?
\(\left\{{}\begin{matrix}x+mx=2\\mx-2y=1\end{matrix}\right.\)
Nếu m=0 \(\Rightarrow\left\{{}\begin{matrix}x=2\\-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{-1}{2}< 0\end{matrix}\right.\) (L)
Nếu m≠0 \(\Rightarrow\left\{{}\begin{matrix}mx+m^2y=2m\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)
Trừ từng vế của (1) cho (2) ta được:
\(m^2y+2y=2m-1\) \(\Leftrightarrow\left(m^2+2\right)y=2m-1\) \(\Leftrightarrow y=\dfrac{2m-1}{m^2+2}\) Thay vào (2) ta được:
\(mx-2\cdot\dfrac{2m-1}{m^2+2}=1\) \(\Leftrightarrow mx=1+\dfrac{4m-2}{m^2+2}=\dfrac{m^2+2+4m-2}{m^2+2}=\dfrac{m\left(m+4\right)}{m^2+2}\)
\(x=\dfrac{m+4}{m^2+2}\)
Vì x>0, y>0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m^2+2}>0\\\dfrac{m+4}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m-1>0\\m+4>0\end{matrix}\right.\) Vì \(m^2+2\ge2>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>-4\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{1}{2}\) Vậy...