Cho \(x+y=10\)
Tìm \(GTLN\) của \(xy\)
Biết x+y=10. Tìm GTLN của H=xy
Đề bài: Biết x + y = 10. Tìm GTLN của H=xy
Giai:
=> GTLN của x và y là: 5 để H=xy
P/s: Tham khảo nha!!
cho x+y=2.tìm GTLN a)A=xy+10 b)x^2-2y^2+x+3y+6
B1Tìm cặp số nguyên sao cho: x+y=xy+3
B2 Cho x+y=3. Tìm GTLN của hạng tử A=xy
Bài 1:
$xy+3=x+y$
$\Leftrightarrow xy-x-y+3=0$
$\Leftrightarrow x(y-1)-(y-1)+2=0$
$\Leftrightarrow (x-1)(y-1)+2=0$
$\Leftrightarrow (x-1)(y-1)=-2$
Vì $x,y$ nguyên nên $x-1, y-1$ nguyên. Khi đó:
$(x-1, y-1)=(2, -1), (-2, 1), (1, -2), (-1, 2)$
Đến đây bạn dễ dàng tìm được giá trị $x,y$ thỏa mãn.
Bài 2:
$x+y=3\Rightarrow y=3-x$. Khi đó:
$A=xy=x(3-x)=3x-x^2$
$-A=x^2-3x=(x^2-3x+1,5^2)-1,5^2=(x-1,5)^2-\frac{9}{4}\geq \frac{-9}{4}$
$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$
Cho x+y=10 TÍnh gtln của p=xy
Cho x,y >0 và X2 +y2 =8 . Tìm GTLN của xy/xy+1 .
Đặt \(P=\dfrac{xy}{xy+1}\Rightarrow\dfrac{1}{P}=\dfrac{xy+1}{xy}=1+\dfrac{1}{xy}\)
Ta có : \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{8}{2}=4\Rightarrow\dfrac{1}{xy}\ge4\)
\(\Rightarrow\dfrac{1}{P}\ge5\Rightarrow P\le\dfrac{1}{5}\)
Dấu "=" xảy ra khi $x=y=2$
Cho x+y=3. Tìm GTLN của M=x+xy+y
x+y=3=>x=3-y
M=x+xy+y=x+y+xy=3-y+y+(3-y).y
=3+3y-y2=-y2+3y+3=-(y2-3y-3)=\(-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-3\right)=-\left[\left(y-\frac{3}{2}\right)^2-\frac{21}{4}\right]=\frac{21}{4}-\left(y-\frac{3}{2}\right)^2\le\frac{21}{4}\) (với mọi y)
Dấu "=" xảy ra <=> y=3/2 <=> x=3/2
Vậy M đạt GTLN là 21/4 khi x=y=3/2
Cho 2 số thực x, y thỏa mãn \(x^2+y^2+xy=3\). Tìm GTLN và GTNN của \(S=x^4+xy+y^4\)
cho x^2-xy+y^2 =<1 tìm gtnn,gtln của 2x^2+xy-y^2