Tìm x, biết: − 1 9 < x < 0
Tìm x Î Z biết:
a) x ( x - 3) = 0;
b) x ( x + 9) = 0;
c) ( x + 1) ( x - 1) = 0;
d) ( x - 13 ) ( x 2 + 8 ) = 0 .
a) x Î{0;3}.
b) xÎ{0;-9}.
c) x Î{-l; 11}.
d) x = 13.
Tìm x thuộc Z biết a) x ( x - 3) = 0; b) x ( x + 9) = 0 c) ( x + 1) ( x - 1) = 0 d) ( x - 13) ( x 2 + 8) = 0
BT9: Tìm x biết
\(1,x^2-9=0\)
\(2,25-x^2=0\)
\(3,-x^2+36=0\)
\(4,4x^2-4=0\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`2,`
`25 - x^2 = 0`
`<=> x^2 = 25 - 0`
`<=> x^2 = 25`
`<=> x^2 = (+-5)^2`
`<=> x = +-5`
Vậy,` S= {5; -5}`
`3,`
`-x^2 + 36 = 0`
`<=> -x^2 = 0 - 36`
`<=> -x^2 = -36`
`<=> x^2 = 36`
`<=> x^2 = (+-6)^2`
`<=> x = +-6`
Vậy, `S= {6; -6}`
`4,`
`4x^2 - 4 = 0`
`<=> 4x^2 = 0+4`
`<=> 4x^2 = 4`
`<=> x^2 = 4 \div 4`
`<=> x^2 = 1`
`<=> x^2 = (+-1)^2`
`<=> x = +-1`
Vậy, `S= {1; -1}`
`@` `\text {Kaizuu lv uuu}`
tìm x, biết:
(4x + 1)(-x - 9) = 0
`(4x+1)(-x-9)=0`
\(< =>\left[{}\begin{matrix}4x+1=0\\-x-9=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}4x=-1\\-x=9\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-9\end{matrix}\right.\)
`(4x+1)(-x-9)=0`
TH1: `4x+1=0`
`=>4x=-1`
`=>x=-1/4`
TH2: `-x-9=0`
`=>-x=9`
`=>x=-9`
Vậy `x\in{-1/4;-9}`
tìm x thuộc Z biết (x+1) + (x+3)+...+(x+9)=0
a) Tính (6x³++11x²-12x-9) b) Tìm x biết 1) 2x²+4x-0 2) (x+2)²-(x+2)(x+1)-0
b:
1: \(\Leftrightarrow2x\left(x+2\right)=0\)
=>x=0 hoặc x=-2
tìm x biết :a)x.(x-1/7).(1/9+x)<0
b)4-x/2x-1/5>0
\(x.\left(x-\frac{1}{7}\right)\left(\frac{1}{9}+x\right)< 0\)
có 4 TH ( Trường hợp)
TH1: \(\hept{\begin{cases}x>0\\x-\frac{1}{7}>0\\\frac{1}{9}+x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x>\frac{1}{7}\\x< -\frac{1}{9}\end{cases}}}\)( vô lí)
TH2:\(\hept{\begin{cases}x>0\\x-\frac{1}{7}< 0\\\frac{1}{9}+x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{1}{7}\\x>-\frac{1}{9}\end{cases}\Leftrightarrow}0< x< \frac{1}{7}}\)
TH3:\(\hept{\begin{cases}x< 0\\x-\frac{1}{7}>0\\\frac{1}{9}+x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{1}{7}\\x>-\frac{1}{9}\end{cases}}}\)(vô lí )
TH4:\(\hept{\begin{cases}x< 0\\x+\frac{1}{7}< 0\\\frac{1}{9}-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -\frac{1}{7}\\x>\frac{1}{9}\end{cases}}}\)(vô lí)
KL: 0<x<1/7
b) \(\frac{\left(4-x\right)}{2x}-\frac{1}{5}>0\)đk: \(x\ne0\)
<=> \(\left(4-x\right).5-2x.1>0\)
<=> \(20-5x-2x>0\)
<=> \(20-7x>0\)
<=> \(20>7x\Leftrightarrow x< \frac{20}{7}\)
. Tìm x, biết:
a) 4x2 – 9 = 0
b) (x + 5)2 – (x – 1)2= 0
c) x2 – 6x – 7 = 0
d) (x + 1)2 – (2x - 1)2 = 0
a)4x2-9=0
⇔ (2x-3)(2x+3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b)(x+5)2-(x-1)2=0
⇔ (x+5-x+1)(x+5+x-1)=0
⇔ 12(x+2)=0
⇔ x=-2
c)x2-6x-7=0
⇔ x2-7x+x-7=0
⇔ x(x-7)+(x-7)=0
⇔ (x-7)(x+1)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
d)(x+1)2-(2x-1)2=0
⇔ (x+1-2x+1)(x+1+2x-1)=0
⇔3x(2-x)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a, 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)
b, (x + 5 )2 - ( x - 1 )2 = 0
<=> ( x+5-x+1 )(x+5+x-1) = 0
<=> 6(2x+4) = 0
<=> 12x+24=0
<=> 12x = -24
<=> x = -2
c, x2-6x-7=0
<=> x2+x-7x-7=0
<=> x(x+1)-7(x+1)=0
<=> (x-7)(x+1)=0
=> x+7=0 hoặc x+1=0
+ x-7=0 => x=7
+ x+1=0 => x=-1
d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)
<=> (-x+2).3x=0
=> x=0 hoặc (-x+2).3=0
+ (-x+2).3=0 => -3x+6=0 => x=-2
b) (x +5)2 -(x -1)2=0
<=> [(x +5) -(x -1)][(x +5) +(x -1)]=0
<=> (x +5 -x +1)(x +5 +x -1)=0
<=> 6(2x+4)=0 <=>12(x +2)=0
=> x +2=0=> x=-2
vậy x= -2
c) x2 -6x -7=0
<=> x2 -7x +x -7=0
<=> (x2 +x)( -7x -7)=0
<=> x(x +1).-7(x +1)=0
<=> (x +1)(x -7)=0
<=> \(\left\{{}\begin{matrix}x+1=0\\x-7=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)
Vậy S={-1; 7}
d) (x +1)2 -(2x -1)2=0
<=> [(x -1)-(2x -1)][(x -1)+(2x -1)]=0
<=> (x -1 -2x +1)(x -1 +2x -1)=0
<=> (x -2x)(3x -2)<=> -x(3x -2)=0
<=> \(\left\{{}\begin{matrix}-x=0\\3x-2=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy S={0; \(\dfrac{2}{3}\)}
Tìm x, biết:
a. x-8√x-9=0
b. x- 2√x-1=0
Tìm các số nguyên x, biết:
a) (x - 1) . (x + 2) = 0
b) (2x - 4) . (3x + 9) = 0
a, \(\left(x-1\right).\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b, \(\left(2x-4\right).\left(3x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\3x+9=0\end{matrix}\right.\left[{}\begin{matrix}2x=4\\3x=-9\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a) TH1: x-1=0 => x=1
TH2: x+2=0 => x=-2
b) TH1: 2x-4=0 <=> 2x= 4 <=> x=2
TH2: 3x+9=0 <=> 3x=-9 <=> x= -3
a) ( x - 1) . ( x + 2 ) = 0
=> x - 1 = 0 => x = 1
x + 2 = 0 x = -2
vậy x ϵ { 1; -2 }
b) ( 2x - 4 ) . ( 3x + 9 ) = 0
=> 2x - 4 = 0 => 2x = 4 => x = 2
3x + 9 = 0 3x = -9 x = -3
vậy x ϵ { 2 ; -3 {
P/S : phần mình suy ra thì bn đóng ngoặc vuông to rồi mới ghi phép tính nhé!