Tính giá trị của biểu thức P = 3 + 2 2 2018 2 2 − 3 2017 .
A. − 3 − 2 2 .
B. 2 2 − 3 .
C. 3 − 2 2 .
D. − 2 − 2 2 .
tính giá trị biểu thức B= 2018 + 2018/1+2 +....+ 2018/1+2+3+..+2017
tính giá trị của biểu thức
B=(-1)^2018.(2/5)^3.(15/4)^2/15^2/2^4.(2/5)^3
Tính giá trị của biểu thức: \(A=\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
Đặt \(2017=a\)
\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)
Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)
\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)
Cho 2 biểu thức A=1+31+32+...+32017 và B=32018:2
Hãy tính giá trị của biểu thức: B-A
\(A=1+3^1+3^2+...+3^{2017}\)
\(3A=3+3^2+3^3+...+3^{2018}\)
\(3A-A=\left(3+3^2+3^3+...+3^{2018}\right)-\left(1+3^1+3^2+...+3^{2017}\right)\)
\(2A=3^{2018}-1\)
\(A=\frac{3^{2018}-1}{2}\)
\(\Rightarrow\)\(B-A=\frac{3^{2018}}{2}-\frac{3^{2018}-1}{2}=\frac{3^{2018}-3^{2018}+1}{2}=\frac{1}{2}\)
Vậy \(B-A=\frac{1}{2}\)
Chúc bạn học tốt ~
ta có: A = 1 + 31 + 32 + ...+ 32017
=> 3A = 31 + 32 + 33 + ....+ 32018
=> 3A - A = 32018 - 1
\(\Rightarrow A=\frac{3^{2018}-1}{2}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3^{2018-1}}{2}}{\frac{3^{2018}}{2}}=\frac{\frac{3^{2018}}{2}}{\frac{3^{2018}}{2}}-\frac{1}{\frac{3^{2018}}{2}}=1-\frac{1}{\frac{3^{2018}}{2}}\)
Tính giá trị biểu thức
A = 1 + 2 + 3 + ... + 2018
Tính giá trị biểu thức
A = 1 + 2 + 3 + ... + 2018
A = {( 2018 - 1 ) : 1 + 1 )} x ( 2018 + 1 ) : 2
A = 2037171
Chúc bạn học tốt !
Tính giá trị biểu thức \(A=\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2000}}+\frac{5^{2000}}{5^{2000}+2^{2018}}\)
Tính giá trị biểu thức biết:
A= 2018/1+2017/2+2016/3+.....+1/2018 ; B= 1/2+1/3+1/4+.....+1/2019
Tính A:B
\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)
\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
C = 2 + 4 + 6 + ... + 2018
Tính giá trị của biểu thức
C = 2 + 4 + 6 + ...+ 2018
C = 2.1 + 2.2 + 2.3 + ...+ 2.1009
C = 2. ( 1 + 2 + 3 + ...+ 1009)
C = 2.[(1+1009).1009:2]
C = 2. 1010.1009.1/2
C = 1010.1009
C = 1 019 090
Số các số hạng của dãy là:
( 2018 - 2 ) : 2 + 1 = 1009
Tổng của dãy là:
( 2018 + 2 ) x 1009 : 2 = 1019090
tính giá trị biểu thức ;1\1*2*3+1\2*3*4+..............................+1\2017*2018*2019
Theo bài ra, ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2017.2018.2019}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2017.2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2018.2019}\right)\)
Giải thích:
\(\frac{2}{1.2.3}=\frac{3}{1.2.3}-\frac{1}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{4}{2.3.4}-\frac{2}{2.3.4}=\frac{1}{1.2}-\frac{1}{3.4}\)
................................................................................
\(\frac{2}{2017.2018.2019}=\frac{2019}{2017.2018.2019}-\frac{2017}{2017.2018.2019}=\frac{1}{2017.2018}-\frac{1}{2018.2019}\)