Chứng tỏ rằng giá trị của biểu thức:
P = 3 m 2 3 m 2 − 3 m 4 + ( 3 m ) 2 ( m 3 − 1 ) + ( − 2 m + 9 ) m 2 − 12
không phụ thuộc vào giá trị của biến m.
Chứng tỏ rằng giá trị của biểu thức sau ko phụ thuộc vào giá trị của x
M=(x+3)^2+(x-3)^2/x^2+9
Chứng tỏ giá trị của các biểu thức sau không thuộc giá trị của biến
(m^2-2m+4).(m+2)-m^3+(m+3).(m+3)-m^2-18
Giúp mình với mình cần gấp lắm😢😢🥺
Ta có : y=−13x3+(m−1)x2+(m+3)x−4y=−13x3+(m−1)x2+(m+3)x−4
Có y′=−x2+2(m−1)x+(m+3)y′=−x2+2(m−1)x+(m+3).
Để hàm số nghịch biến trên (0;3)(0;3) thì f′(x)<0∀x∈(0;3)f′(x)<0∀x∈(0;3) nghĩa là :
−x2+2(m−1)x+m+3<0⇔m<x2+2x−32x+1−x2+2(m−1)x+m+3<0⇔m<x2+2x−32x+1 với mọi x∈(0;3)x∈(0;3)
Đến đây ta chỉ việc tìm cực tiểu của hàm số f(x)=x2+2x−32x+1f(x)=x2+2x−32x+1 trên (0;3)(0;3).
Dễ dàng chứng minh f(x)f(x) đồng biến nên f(x)>f(0)=−3f(x)>f(0)=−3.
Vậy m≤−3m≤−3.
------------------------------------------
P/S:Ko chắc
chứng tỏ giá trị của biểu thức không phụ thuộc vào x
M=(x+1)^3- (x-1)^3+3[(x-1)^2+(x+1)^2]
trong sach nang cao va phat trien lop 8 co ban a
ban tu tham khao
chu giai dai dong lam
chứng tỏ rằng
giá trị của biểu thức A = 5 + 5 ^ 2 + 5 ^ 3 + ...........+ 5 ^ 8 chia hết cho 30
giá trị của biểu thức B = 3 + 3 ^ 3 + 3 ^ 5 + 3 ^ 7 + ..........+ 3 ^ 29 chia hết cho 273
Ta có : A = 5 + 52 + 53 + ..... + 58
=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)
=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)
=> A = 30 + 52.30 + .... + 56.30
=> A = 30(1 + 52 + .... + 56)
Vì (1 + 52 + .... + 56) là số nguyên
Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
Chứng tỏ rằng với mọi x thuộc Q thi giá trị biểu thức M=\(\dfrac{3\left(x^2+1\right)+x^2y^2+y^2-2}{\left(x+y\right)^2+5}\)
là số dương
Lời giải:
$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$
Ta thấy:
$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:
$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$
$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi
$x\mathbb{Q}, y\in\mathbb{R}$
Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)
Hay $M$ là số dương (đpcm)
Bài 1 tìm GTLN
(1-3x)(x+2)
Bài 2 Ct đa thức sau ko có nghiệm
A=x²+2x+7
Bài 3 Chứng tỏ rằng đa thức sau luôn dương vs mọi giá trị của biến
M=x²+2x+7
Bài 4 Chứng tỏ đa thức sau luôn ko dương vs mọi giá trị của biến
A=-x²+18x-81
Bài 5 Chứng tỏ các biểu thức sau luôn ko âm vs mọi giá trị của biến
F=-x²-4x-5
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
1/ Chứng tỏ rằng :
a. Giá trị của biểu thức A= 5+ 52+...............+ 58 là bội của 30
b. Giá trị cảu biểu thức B= 3+32 +.....................329 là bội của 273
Chứng tỏ rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến:2x + 3)(4x2 – 6x + 9) – 2(4x3 – 1) + 8
\(=8x^3+27-8x^3+2+8=37\left(đpcm\right)\)
chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến m=(x^2y-3)^2-(2x-y)^3+xy^2(6-x^3) +8x^3-6x^2y-y^3
Trả lời :
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến M = ( x2y - 3 )2 - ( 2x-y)3 +xy2( 9-x3 ) + 8x3 - 6x2y - y3
Đè bài đó mọi người mk viết lại cho mn nhìn rõ
Hãy cùng giúp bạn ấy nào
m = (x2y - 3)2 - (2x - y)3 + xy2(6 - x3) + 8x3 - 6x2y - y3
m = x4y2 - 6x2y + 9 - (2x - y)3 + xy2(6 - x2) + 8x3 - 6x2y - y3
m = x4y2 - 6x2y + 9 - 8x3 + 12x2y - 6xy2 + y3 + xy2(6 - x3) + 8x3 - 6x2y - y3
m = x4y2 - 6x2y + 9 - 8x3 + 12x2y - 6xy2 + y3 + 6xy2 - x4y2 + 8x3 - 6x2y - y3
m = 9
Vậy: biểu thức không phụ thuộc vào giá trị của biến