Có bao nhiêu số chẵn có ba chữ số được lập thành từ các chữ số 2,3,5 và 7
Có bao nhiêu số chẵn có ba chữ số được lập thành từ các chữ số 2,3,5 va 7
vì là số chẵn nên số cần tìm sẽ là ab2, a chọn 1 trong 4 số nên a có 4 cách chọn b cũng có 4 cách chọn vậy lập đc 4× 4 = 16 số
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn đứng liền nhau?
A. 864
B. 1728
C. 576
D. 792
Chọn D
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng
a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là
(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})
Suy ra, số các số tự nhiên thỏa đề ra là
Cho tập hợp A= { 0,1,2,3,4,5,6,7}. Có bao nhiêu số tự nhiên chẵn có 6 chữ số khác nhau được lập thành từ các chữ số của tập A đồng thời phải có mặt ba chữ số 0,1,2 và chúng đứng cạnh nhau
Gọi số cần tìm là \(\overline{abcdef}\)
TH1: 0,1,2 là 3 số cuối
=>\(\overline{abc012};\overline{abc210}\)
a có 6 cách
b có 5 cách
c có 4 cách
=>CÓ 6*5*4*2=240 cách
TH2: \(\overline{ab\left\{0,1,2\right\}f}\)
0,1,2 có 3!=6 cách
a có 5 cách
b có 4 cách
f có 3 cách
=>Có 360 cách
TH3: \(\overline{a\left\{0,1,2\right\}ef}\)
0,1,2 có 3!=6 cách
f có 2 cách
e có 5 cách
a có 4 cách
=>Có 6*3*5*4=360 cách
TH4: \(\overline{\left\{0,1,2\right\}def}\)
{0;1;2} có 4 cách
f có 3 cách
d có 5 cách
e có 4 cách
=>Có 4*3*5*4=240 cách
=>Có 120+120+360+360+240=1200 cách
TH1 (012)def : chọn a từ (1,2) có 2 cách
chọn b từ (012)/(a) có 2 cách
chọn c từ (012)/(ab) có 1 cách
chọn f chẵn từ (4,6) có 2 cách
với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách
vậy có 2.2.1.4A2.2 số
TH2 a(012)ef
xếp chỗ cho 3 số (012) có 3! cách
chọn f từ (4,6) có 2 cách
chọn ae từ 4 số còn lại và xếp có 4A2 cách
vậy có 3!.2.4A2 số
TH3 ab(012)f
tương tự TH2
TH4 : abc(012):
chọn f chẵn từ (0,2) có 2 cách
chọn e từ (012)/(a) có 2 cách
chọn d từ (012)/(ab) có 1 cách
với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách
vậy có 2.2.1.5A3 số
tổng 4 TH ta có
2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn đứng liền nhau và hai chữ số lẻ đứng liền nhau?
A. 504
B. 576
C. 2448
D. 936
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b,c}).
Suy ra, số các số tự nhiên thỏa đề ra là
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ?
A. 72
B. 576
C. 216
D. 504
Chọn C
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là
(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {a,c,e}).
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là
(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {0,c,e}).
Suy ra, số các số tự nhiên thỏa đề ra là
Từ các chữ số 0,1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số?
A. 145
B. 168
C. 105
D. 210
Đáp án B
Phương pháp: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 ) , tìm số cách chọn cho các chữ số a, b,c sau đó áp dụng quy tắc nhân.
Cách giải: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 )
Có 4 cách chọn c.
Có 6 cách chọn a.
Có 7 cách chọn b.
Vậy có 4.6.7 = 168 số.
Chú ý và sai lầm: Các chữ số a, b, c không yêu cầu khác nhau
Từ các số 3,4,5,6 lập được bao nhiêu số có ba chữ số khác nhau và phải là số chẵn.
10 số là:
3456
3546
3654
3564
4536
4356
5346
5364
6354
6534
cho các chữ số 0,1,2,3,4,5,6 . có bao nhiêu số chẵn có 3 chữ số được thành lập từ các chữ số đã cho ?
Chọn 4 chữ số khác nhau từ các số 0, 2, 4, 5, 6, 7 để lập thành số chẵn có 4 chữ số. Hỏi có thể tạo được bao nhiêu số như vậy?
Số có 4 chữ số có dạng: \(\overline{abcd}\)
Trong đó d có 4 cách chọn
a có 5 cách chọn
b có 6 cách chọn;
c có 6 cách chọn
Số các số chẵn có 4 chữ số được lập từ các số đã cho là:
4 x 5 x 6 x 6 = 720 (số)
Đáp số: 720 (số)
Tham khảo:
Trong đó d có 4 cách chọn: \(\overline{abcd}\)
a có 5 cách chọn
b có 6 cách chọn;
c có 6 cách chọn
Số các số chẵn có 4 chữ số được lập từ các số đã cho là:
4 x 5 x 6 x 6 = 720 (số)
Đáp số: 720 (số)