Rút gọn các biểu thức sau:
a) A = 4 a + b a 2 − 4 ab + 4 a − b a 2 + 4 ab . a 2 − 16 b 2 a 2 + b 2 với x ≠ 0 và x ≠ ± 3
b) B = t t + 2 + 1 : 1 − 3 t 2 4 − t 2 với t ≠ ± 1 và t ≠ ± 2
Bài 4: Rút gọn các biểu thức sau:
a)A=(2x+y)2-(y-2x)2
b)B=x2-y2+(x-y)2
Câu 1 (1,5 điểm). Rút gọn các biểu thức sau:
a. A = b)B = c) C =
\(a,A=7\sqrt{5}+6\sqrt{5}-5\sqrt{5}-6\sqrt{5}=2\sqrt{5}\\ b,B=12-5\cdot2=2\\ c,C=\left[2-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\right]\left[2+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}\right]\\ C=\left(2-\sqrt{7}\right)\left(2+\sqrt{7}\right)=4-7=-3\)
Rút gọn các biểu thức sau:
a,\(A=5-2x-|x-2|\)
b,\(B=|4-3x|-3x+2\)
Giup mk vs ạ ai nhanh mk tick :>
Rút gọn các biểu thức sau:
A = \(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{a}\); \(a>0\)
B = \(3\sqrt{5a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{5a};a\ge0\)
Bài 4. Rút gọn các biểu thức sau:
a) A =1−2+3−4+5−6+ ...+ 2021-2022+2023
b) B = 1-4+7-10+...+307-310+313
c) C= −2194.21952195+2195.21942194
Mn giúp e vs.
Rút gọn các biểu thức sau:
A = \(\dfrac{3}{2\left(2x-1\right)}\sqrt{8\left(4x^2-2x+1\right)x^4}\)
B = \(\dfrac{a-b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2-2ab+b^2}}\)
\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)
\(=\pm3\sqrt{2}x^2\)
\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)
\(=\pm\left|a\right|\)
Rút gọn các biểu thức sau:
a,A=\(|x-2|+|2x-1|\)
b,B=\(|4x-3x|-|2x+1|\)
Giup mk vs ạ ai nhanh mk tick :>
Câu 1. Rút gọn các biểu thức sau:
a/\(\sqrt{4a^2}\)(với a<0)
b/\(\sqrt{4x^2-12x+9}\)(với x<3/2)
a) \(\sqrt{4a^2}=2\left|a\right|=-2a\) ( do a<0)
b) \(\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=\left|2x-3\right|=3-2x\)(do \(x< \dfrac{3}{2}\Leftrightarrow2x-3< 0\))
Cho các biểu thức sau:
A = \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức \(M=\dfrac{A}{B}\)
b) Tìm GTNN của biểu thức M
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
Rút gọn rồi tính giá trị của các biểu thức sau:
a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) tại x = \(-\sqrt{2}\)
b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) tại a =2, b =\(-\sqrt{3}\)
\(b.\)
\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)
\(=\left|3a\right|\cdot\left|b-2\right|\)
Với : \(a=2,b=-\sqrt{3}\)
\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)
\(a.\)
\(=\sqrt{4\cdot\left(3x+1\right)^2}=2\cdot\left|3x+1\right|\)
Với : \(x=-\sqrt{2}\)
\(2\cdot\left|3\cdot-\sqrt{2}+1\right|=2\cdot\left|1-\sqrt{6}\right|\)
a) Ta có:\(\sqrt{4\left(9x^2+6x+1\right)^2}\)
\(=2\left(3x+1\right)^2\)
\(=2\cdot\left(-3\cdot\sqrt{2}+1\right)^2\)
\(=2\left(19-6\sqrt{2}\right)\)
\(=38-12\sqrt{2}\)
b) Ta có: \(\sqrt{9a^2\left(b^2-4b+4\right)}\)
\(=3\left|a\right|\left|b-2\right|\)
\(=3\cdot\left|2\right|\cdot\left|-\sqrt{3}-2\right|\)
\(=6\left(2+\sqrt{3}\right)=12+6\sqrt{3}\)