Cho hình chữ nhật ABCD biết AD = 1 . Giả sử E là trung điểm AB và thỏa mãn sin B D E ^ = 1 3 .Tính độ dài cạnh AB.
A. 1
B. 2
C . 2
D. 3
Cho hình chữ nhật $A B C D$ biết $A D=1$. Giả sử $\mathrm{E}$ là trung điểm $\mathrm{AB}$ và thỏa mãn $\sin \widehat{B D E}=\dfrac{1}{3}$.
Tính độ dài cạnh $A B$.
cho hình bình hành ABCD. N, M là trung điểm của AD và BC. I và H là giao điểm của AN với BD , CM với BD. E , Flà trung điểm của AB và CD. Hình bình hành ABCD thỏa mãn điều kiện gì đề EIFH là hình chữ nhật
cho hình bình hành ABCD. N, M là trung điểm của AD và BC. I và H là giao điểm của AN với BD , CM với BD. E , Flà trung điểm của AB và CD. Hình bình hành ABCD thỏa mãn điều kiện gì đề EIFH là hình chữ nhật
bạn xem lại đề 1 chút đi! hình như sai thứ tự điểm đó bạn! mk ko vẽ được hình
cho hình chữ nhật ABCD có E ,F lần lượt là trung điểm của AB,CD.Gọi O là giao điểm của AB và BD
a) CM : DEBF là hình bình hành
b) CM: 3 điểm E ; O ; F thẳng hàng
c ) Biết AD/AB = 2/3 và hình chữ nhật ABCD có diện tích 96 cm vuông . Tính AD ; AB?
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
Cho hình chữ nhật ABCD (AB > AD). Vẽ AE vuông góc với BD tại E.
a) CMR: ΔABE∼ΔDBA và AB^= BE. BD
b) Giả sử AE cắt BC, DC tại G và F. CMR EA^2 = EG. EF
c) Gọi I và H lần lượt là các trung điểm của BF và DG. CMR IH ⊥ EC
a) Ý 1: Dựa vào \(\widehat{AEB}=\widehat{DAB}=90^o\) và \(\widehat{ABD}\) chung, suy ra \(\Delta ABE~\Delta DBA\left(g.g\right)\)
Ý 2: Từ \(\Delta ABE~\Delta DBA\Rightarrow\dfrac{AB}{BD}=\dfrac{BE}{AB}\Rightarrow AB^2=BE.BD\)
b) Dễ thấy \(\widehat{DEF}=\widehat{BEG}=90^o\) và \(\widehat{DFE}=\widehat{EBG}\) (vì cùng phụ với \(\widehat{BDC}\)) nên suy ra \(\Delta EDF~\Delta EGB\left(g.g\right)\) \(\Rightarrow\dfrac{ED}{EG}=\dfrac{EF}{EB}\) \(\Rightarrow EG.EF=ED.EB\) (1)
Mặt khác, dễ dàng cm \(\Delta EAD~\Delta EBA\left(g.g\right)\) \(\Rightarrow\dfrac{EA}{EB}=\dfrac{ED}{EA}\) \(\Rightarrow EA^2=EB.ED\) (2)
Từ (1) và (2) \(\Rightarrow EA^2=EG.EF\left(=EB.ED\right)\)
c) Dễ thấy F là trực tâm của \(\Delta GBD\). \(\Delta GED\) vuông tại E có trung tuyến EH nên \(EH=\dfrac{1}{2}DG\). Tương tự suy ra \(CH=\dfrac{1}{2}DG\). Từ đó \(EH=DH\). Suy ra H nằm trên đường trung trực của đoạn CE (3)
Mặt khác, \(\Delta EBF\) vuông tại E có trung tuyến EI nên \(EI=\dfrac{1}{2}BF\). Tương tự, ta có \(CI=\dfrac{1}{2}BF\). Do đó \(EI=CI\) hay I nằm trên đường trung trực của đoạn CE (4)
Từ (3) và (4), suy ra HI là đường trung trực của đoạn CE, suy ra \(HI\perp CE\) (đpcm)
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Gọi M,N lần lượt là trung điểm của AO và BO.
1/ Cho AB = 8cm ; BC = 10cm.
a/ Tính diện tính hình chữ nhật ABCD.
b/ C/m DMNC là hình thang cân.
2/ Giả sử AC = 2AD. Gọi E là giao điểm của tia CN và tia DM. C/m tứ giác ADOE là hình thoi.
1:
a: \(S_{ABCD}=AB\cdot BC=80\left(cm^2\right)\)
Cho tứ giác ABCD (AB không song song với CD). Giả sử M, N lần lượt là đường trung bình của AB và CD, thỏa mãn: MN = BC + AD / 2 . Gọi I là trung điểm của BD. Chứng minh: ABCD là hình thang.
a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:
AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)
Từ hai tỉ số trên, ta có:
AC/AD = BE/BD
Vậy, ta đã chứng minh được AF // BD.
b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:
CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)
Vậy, ta đã chứng minh được E là trung điểm CF.
Cho hình bình hành ABCD goi M,N lần lượt là trung điểm của AD và BC, I và H lần lượt là giao điểm của AN và CN với BD, E là trung điểm của AB, F là trung điểm của CD. HÌnh bình hành ABCD phải thảo mãn những điều kiện gì để EIFH là hình chữ nhật?