Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Tùng Dương
Xem chi tiết
Phạm Duy Khang
13 tháng 9 2024 lúc 21:08

A

Pham thi thu Phuong
Xem chi tiết
Pham thi thu Phuong
Xem chi tiết
mo chi mo ni
25 tháng 10 2018 lúc 20:38

bạn xem lại đề 1 chút đi! hình như sai thứ tự điểm đó bạn! mk ko vẽ được hình

Yến Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 22:09

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

NHU DUC TRAN
Xem chi tiết
Lê Song Phương
26 tháng 6 2023 lúc 19:51

a) Ý 1: Dựa vào \(\widehat{AEB}=\widehat{DAB}=90^o\) và \(\widehat{ABD}\) chung, suy ra \(\Delta ABE~\Delta DBA\left(g.g\right)\)

  Ý 2: Từ \(\Delta ABE~\Delta DBA\Rightarrow\dfrac{AB}{BD}=\dfrac{BE}{AB}\Rightarrow AB^2=BE.BD\)

b) Dễ thấy \(\widehat{DEF}=\widehat{BEG}=90^o\) và \(\widehat{DFE}=\widehat{EBG}\) (vì cùng phụ với \(\widehat{BDC}\)) nên suy ra \(\Delta EDF~\Delta EGB\left(g.g\right)\) \(\Rightarrow\dfrac{ED}{EG}=\dfrac{EF}{EB}\) \(\Rightarrow EG.EF=ED.EB\)   (1)

 Mặt khác, dễ dàng cm \(\Delta EAD~\Delta EBA\left(g.g\right)\) \(\Rightarrow\dfrac{EA}{EB}=\dfrac{ED}{EA}\) \(\Rightarrow EA^2=EB.ED\)    (2)

Từ (1) và (2) \(\Rightarrow EA^2=EG.EF\left(=EB.ED\right)\)

c) Dễ thấy F là trực tâm của \(\Delta GBD\)\(\Delta GED\) vuông tại E có trung tuyến EH nên \(EH=\dfrac{1}{2}DG\). Tương tự suy ra \(CH=\dfrac{1}{2}DG\). Từ đó \(EH=DH\). Suy ra H nằm trên đường trung trực của đoạn CE  (3)

 Mặt khác, \(\Delta EBF\) vuông tại E có trung tuyến EI nên \(EI=\dfrac{1}{2}BF\). Tương tự, ta có \(CI=\dfrac{1}{2}BF\). Do đó \(EI=CI\) hay I nằm trên đường trung trực của đoạn CE   (4)

 Từ (3) và (4), suy ra HI là đường trung trực của đoạn CE, suy ra \(HI\perp CE\) (đpcm)

Lê Song Phương
26 tháng 6 2023 lúc 19:51

Hình vẽ đây nhé

Lê Trần Thanh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 18:10

1: 

a: \(S_{ABCD}=AB\cdot BC=80\left(cm^2\right)\)

le kim anh
Xem chi tiết
mai phương thúy
Xem chi tiết
meme
5 tháng 9 2023 lúc 11:48

a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:

AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)

Từ hai tỉ số trên, ta có:

AC/AD = BE/BD

Vậy, ta đã chứng minh được AF // BD.

b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:

CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)

Vậy, ta đã chứng minh được E là trung điểm CF.

dang kien cuong
Xem chi tiết