a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Lấy điểm M thuộc đoạn thẳng OC. Gọi E, F lần lượt là hình chiếu của điểm M trên đường thẳng AB, AD. Chứng minh:
a) Tứ giác AEMF là hình chữ nhật.
b) BD // EF.
+ vẽ hình nhé
Cho hình chữ nhật ABCD và điểm E thuộc đường chéo BD. Qua E kẻ đường thẳng song song với AC cắt AD, BA lần lượt tại M, N. Vẽ hình chữ nhật MANF. a) CM: AF song song BD b) CM: E là trung điểm của CF
cho tg ABC cân tại A. Từ điểm D trên BC kẻ đường vuông góc với BC cắt AB, Ac lần lượt tại E, F. Dựng các hình chữ nhật BDEH và CDFK
a) CM: Ba điểm A, H, K thẳng hàng
b) CM: A là trung điểm của HK
c) Gọi I, J theo thứ tự là tâm của các hình chữ nhật BDEH và CDFK. Tìm tập hợp trung điểm M của IJ khi D di động trên BC
Bài 5. Cho hình chữ nhật ABCD. Nối C với một điểm E bất kì trên đường chéo BD. Trên tia đối của tia EC lấy điểm F sao cho EF = EC. Vẽ FH và FK lần lượt vuông góc với đường thẳng AB và AD tại H và K. Chứng minh:
a) Tứ giác AHFK là hình chữ nhật
b) AF // BD;
c) Ba điểm E, H, K thẳng hàng.
Cho tứ giác ABCD . Gọi E, F,G,H lần lược là trung điểm của AB, BC, CD, AD Bé vịt nhỏ A) chứng minh rằng : tứ giác EFGH là hình bình hành b) cho AC vuông góc với BD . Chứng minh EFGH là hình chữ nhật . ( Vẽ hình , ghi giả thiết , kết luận đc 0.5 ₫
Cho hình chữ nhật ABCD. Gọi E là điểm bất kì trên đường chéo BD, trên tia đối của tia EC lấy điểm F sao cho CE=EF. Gọi G và H lần lượt là hình chiếu của F trên AB và AD. CM: 3 điểm E,G,H thẳng hàng
Cho tam giác ABC vuông tại 4 có AB< AC . Kẻ AH 1 BC(H e BC). Gọi E,F lần
lượt là trung điểm của AH,CH.
a) Giả sử AC =12 cm. Tính độ dài đoạn thẳng EF .
b) Gọi K là trung điểm của AC.Chứng minh tứ giác HEKF là hình chữ nhật.
cho hình chữ nhật abcd vẽ bh vuông góc với ac. Gọi i là trung điểm của bh, k là trung điểm của ah, m là trung điểm của ch, n là trung điểm của ad, e là trung điểm của ab, f là trung điểm của dh, p là trung điểm của cd. CM:
a) MI vuông góc AB
b) AIMN là hình hình hành
c) I là trực tâm của tam giác ABM
d) BM vuông góc MN
e) BMFE là hình bình hành
f) EF vuông góc MN
g) KICP là hình bình hành
h) BK vuông góc PK
Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD