a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\)
=>AEMF là hình chữ nhật
b:
Ta có: MF\(\perp\)AD
DC\(\perp\)AD
Do đó: MF//DC
Ta có: AEMF là hình chữ nhật
=>\(\widehat{AEF}=\widehat{AMF}\)
mà \(\widehat{AMF}=\widehat{ACD}\)(hai góc đồng vị, MF//CD)
nên \(\widehat{AEF}=\widehat{ACD}\)
Ta có: ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường và AC=BD
=>O là trung điểm chung của AC và BD và AC=BD
=>OA=OB=OC=OD
Xét ΔACD vuông tại D và ΔCAB vuông tại B có
CA chung
AD=CB
Do đó: ΔACD=ΔCAB
=>\(\widehat{ACD}=\widehat{CAB}\)
mà \(\widehat{CAB}=\widehat{OAB}=\widehat{OBA}\)(ΔOAB cân tại O)
nên \(\widehat{ACD}=\widehat{ABD}\)
=>\(\widehat{AEF}=\widehat{ABD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên EF//BD